
 

 
The Cognition and Neuroergonomics (CaN) Collaborative 

Technology Alliance (CTA): Scientific Vision, Approach, 

and Translational Paths 

 
by Kelvin S. Oie, Kaleb McDowell, Jason Metcalfe, W. David Hairston,  

Scott Kerick, Tim Lee, and Scott Makeig 

 

ARL-SR-0252 September 2012 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Approved for public release; distribution is unlimited. 



NOTICES 

 

Disclaimers 

 
The findings in this report are not to be construed as an official Department of the Army position unless 

so designated by other authorized documents. 

 

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the 

use thereof. 

 

Destroy this report when it is no longer needed.  Do not return it to the originator. 
 
 



Army Research Laboratory 
Aberdeen Proving Ground, MD  21005-5425 

 

ARL-SR-0252 September 2012 

 

 

 

 

The Cognition and Neuroergonomics (CaN) Collaborative 

Technology Alliance (CTA): Scientific Vision, Approach, 

and Translational Paths 

 
Kelvin S. Oie, Kaleb McDowell, W. David Hairston, and Scott Kerick 

Human Research and Engineering Directorate, ARL 
 

 

Jason Metcalfe and Tim Lee 
DCS Corporation 

Alexandria, VA 

 
Scott Makeig 

Swartz Center for Computational Neuroscience, 

University of California 

San Diego, CA 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Approved for public release; distribution is unlimited. 



 ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

September 2012 

2. REPORT TYPE 

Final 

3. DATES COVERED (From - To) 

 
4. TITLE AND SUBTITLE 

The Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance 

(CTA): Scientific Vision, Approach, and Translational Paths 

5a. CONTRACT NUMBER 

W911NF-10D-0022 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

Kelvin S. Oie, Kaleb McDowell, Jason Metcalfe, W. David Hairston,  

Scott Kerick, Tim Lee, and Scott Makeig 

5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 

ATTN:  RDRL-HRS-C 

Aberdeen Proving Ground, MD  21005-5425 

 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

ARL-SR-0252 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 

10. SPONSOR/MONITOR’S ACRONYM(S) 

 

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

 

14. ABSTRACT 

The Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance (CTA) has recently been formed by the U.S. 

Army Research Laboratory (ARL) and a consortium of leading industry and academic research partners. The CaN CTA seeks 

to build upon our knowledge of neuroscience, human factors, psychology, and engineering to enhance our understanding of 

Soldier brain function and behavior in complex operational settings, assessed outside the confines of standard research 

laboratories. To do so, new approaches to neuroscientific inquiry are needed to overcome the scientific and technological 

barriers that have limited previous research efforts. This report discusses these barriers, and presents the overall CaN CTA 

scientific vision and approach to overcoming them, as well as describes three initial transitions that outline paths that will result 

in practical solutions to address Army problems and unmet needs.  

15. SUBJECT TERMS 

Neuroscience; Cognitive Performance; Operational Environments; Human; Collaborative Technology Alliance 

16. SECURITY CLASSIFICATION OF:   
17. LIMITATION 
     OF  
      ABSTRACT 

UU 

18. NUMBER 
      OF  
       PAGES 

74 

 

19a. NAME OF RESPONSIBLE PERSON 

Oie McDowell 
a. REPORT 

Unclassified 

b. ABSTRACT 

Unclassified 

c. THIS PAGE 

Unclassified 

19b. TELEPHONE NUMBER (Include area code) 

410-278-5960 

 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 iii 

Contents 

List of Figures v 

List of Tables v 

Preface vi 

1. Introduction 1 

1.1 The CaN CTA .................................................................................................................3 

2. Translational Science 5 

2.1 Army Relevance ..............................................................................................................5 

2.2 Scientific Barriers and Hurdles .......................................................................................6 

2.3 The CaN CTA Scientific Vision .....................................................................................9 

3. The CaN CTA Approach to Translational Science 12 

3.1 Addressing Scientific Barriers to Enable Translational Science ...................................12 

3.2 Translational Science Within Specific Neurocognitive Performance Domains ...........23 

4. Transitions 26 

4.1 TE I:  MoBI for Detecting Changes in Vehicle Operator Alertness and Performance 

Prediction ................................................................................................................................27 

4.1.1 TE I.  Background .............................................................................................27 

4.1.2 TE I.  Transition Barriers and Hurdles ..............................................................28 

4.1.3 TE I.  Translational Timeline ............................................................................29 

4.1.4 TE I.  Transitions ...............................................................................................31 

4.2 TE II.  Advanced Tools for MoBI and Neurocognitive Performance Assessment .......32 

4.2.1 TE II.  Background ............................................................................................32 

4.2.2 TE II.  Transition Barriers and Hurdles .............................................................33 

4.2.3 TE II.  Transitional Timeline .............................................................................35 

4.2.4 TE II.  Transitions .............................................................................................38 

4.3 TE III.  Enhanced Design of High-information Multichannel Crew Stations...............39 

4.3.1 TE III.  Background ...........................................................................................39 

4.3.2 TE III.  Transition Barriers and Hurdles ...........................................................43 



 iv 

4.3.3 TE III.  Translational Timeline ..........................................................................46 

4.3.4 TE III. Transitions .............................................................................................49 

5. References 50 

Appendix.  Listing of Projects and Principal Investigators 57 

List of Symbols, Abbreviations, and Acronyms 59 

Distribution List 62 

 



 v 

List of Figures 

Figure 1.  A wearable and wireless dry-electrode (WWD) EEG system that  features dry 
MEMS EEG sensors (lower left), low-power signal acquisition, amplification and 
digitization, wireless telemetry (upper left), with online signal processing. ...........................16 

Figure 2.  Through-the-hair dry electrode design. A yet newer (07/09), low-cost ($0.50U.S.) 
design (not shown) has “fingers” that make varying height and angle contacts with the 
scalp. ........................................................................................................................................17 

Figure 3.  Translational timeline depicting expected progress in TE I. .........................................30 

Figure 4.  Translational timeline depicting expected progress in TE II. ........................................36 

Figure 5.  Example of crew station technology developed to optimize Soldier workload and 
provide the ability to conduct mission planning; route planning; reconnaissance, 
surveillance, and target acquisition (RSTA); and fire control capabilities.  The crew 
station WMI software is fully configurable (up to six possible independent screens may 
be displayed simultaneously), portable (between crew stations), and interoperable.  Here, 
two crew stations are shown as mounted on a large 6 DOF motion simulator located at 
TARDEC..................................................................................................................................40 

Figure 6.  Translational timeline depicting expected progress in TE III. ......................................47 

 

List of Tables 

Table A-1.  Projects and principal investigators. ...........................................................................57 

 

 



 vi 

Preface 

Meeting the needs of the Army’s Future Force requires ongoing research investments that also 

support the rapid transition of innovative technologies from cutting-edge basic research to 

fieldable technological solutions.  As a means for enabling this process, the Army must bring 

together world-class research and development talent and focus it on Army-specific technology 

objectives for application to Army needs. 

A Collaborative Technology Alliance (CTA) is a partnership among Army laboratories and 

centers, private industry, and academia.  Active collaboration among these three components is a 

key element of the CTA concept, with each bringing distinctly different approaches, 

perspectives, and capabilities: academic research laboratories are the country’s storehouse of 

basic science innovation; industrial partners have unique capabilities and relationships that are 

needed to leverage existing research results into technology transition; and Army scientists and 

engineers bring both research skills and a Soldier-centric focus to keep programs oriented toward 

solving complex Army technology problems.  In this way, CTAs are comprised of 

multidisciplinary teams that are generating the technological advances needed to meet the needs 

of the Future Force. 

The U.S. Army Research Laboratory (ARL) has a history of successful CTA collaborations 

dating back over a decade, including five completed CTA programs.  The Advanced Decision 

Architectures CTA, which designed, tested, and transitioned new computer science innovations 

to facilitate better Soldier understanding and situational understanding; the Advanced Sensors 

CTA, which developed affordable sensors to provide continuous situational awareness; rapid, 

precise discrimination and targeting; and the ability to sense the environment for rapid 

navigation and defense; the Communications and Networks CTA, which developed technologies 

to enable a fully mobile, fully communicating, agile, situationally aware, and survivable, 

lightweight force, through advanced wireless networks across multiple, heterogeneous agents 

under severe bandwidth, energy, security, and operational constraints; the Power and Energy 

CTA, which advanced fundamental sciences and understandings of efficient, lightweight, 

compact power and propulsion technologies for the dismounted Soldier, vehicles, and robotic 

platforms of the future Army; and finally, the Robotics CTA, which researched core technologies 

to support Army autonomous vehicle goals and advancing the state-of-the-art in perception 

technologies, intelligent controls, and human-machine interfaces. 

Now, the Cognition and Neuroergonomics (CaN) CTA seeks to continue the successes of 

previous collaborative work involving Government, industry, and academia.  The CaN CTA has 

been established to address the development of fundamental translational principles, i.e., 

principles governing the application of neuroscience-based research and theory to complex 

operational settings.  The Alliance will be building upon and leverage the massive worldwide 
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research and technology development efforts in the cognitive neurosciences.  For example, the 

popular Web site scimagojr.com reports that there have been over 400,000 citable articles 

published in the neurosciences worldwide in the period between 1996 and 2010, with articles 

appearing in more than 300 peer-reviewed neuroscience journals. In addition, the National 

Industrial Organization reports an over $140 billion USD annual investment in 

neurotechnologies, and the publication of articles related to brain-computer interface has 

witnessed nearly exponential growth over the past decade.  

Exciting new developments in sensor technologies, statistical modeling approaches, and 

computational analysis capabilities are bringing new methodological and paradigmatic changes 

that are consistent with the growing appreciation of the fundamental need to study human 

cognitive behavior under real-world conditions.  Furthering the development and application of 

these technologies, methods, and approaches are foundational to the vision and the approach 

adopted by the CaN CTA, which is articulated in this document.  Realizing this vision through 

the focused research and development efforts planned within the CaN CTA has the potential to 

achieve ground-breaking advances in Soldier-System design improvements and position the 

Army as a world-wide leader in the neuroscience research and neurotechnology development 

communities. 

Other Government agencies are invited to join this Alliance, contribute their technical expertise 

and personnel, and participate fully in collaborative research efforts under the CaN CTA.  The 

intellectual synergies established through such collaboration, including the sharing of equipment 

and facilities to promote efficiencies, will create a critical mass of private sector and Government 

scientists and engineers focused on solving the military technology challenges impacting Soldier 

neurocognitive performance, as well as supporting and stimulating dual-use applications of this 

research and technology to benefit commercial use.  To achieve this, the CaN CTA will 

implement computational modeling, and will conduct and link neuroscience-based research from 

multiple levels to produce advances in fundamental science and technology, demonstrate and 

transition technology, and develop research demonstrators for Warfighter experimentation. 
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1. Introduction 

Difficulties experienced as U.S. forces attempt to identify and neutralize the threats associated 

with the evolving security context have inspired the Army to reconsider, at a fundamental level, 

the capabilities and readiness of its personnel and materiel resources (Geren and Casey, 2008; 

Speakes and Martin, 2008).  Imperatives to prepare and transform the Army to meet the demands 

of the modern strategic environment have placed science and technology in a prominent position. 

Enabling technology advances are enhancing Soldier-system performance and expanding 

operational capabilities, however, these advances can also intensify the need to assess the 

Soldier’s ability to perform tasks under complex, dynamic, and time-pressured operational 

conditions.  Technological advances, particularly in sensor deployment, information bandwidth, 

and automation, coupled with economic and political realities, will continue to place more and 

more responsibility on fast, distributed, and effectively independent decisions by solo or small 

groups of Soldiers who control ever more potent defensive and offensive assets.  Under such 

circumstances, Soldier cognitive failures in comprehension and decision making based on an 

ever more complex data stream may become a critical bottleneck in Army defensive and 

offensive capabilities. Indeed, both failures to act and imprudent reactions can have high costs in 

terms of mission success, human suffering, and sociopolitical perception. 

It thus becomes increasingly important that Army systems integrate knowledge of, as well as 

actively enhance, operator cognitive state and reactions to events.  Towards this end, 

neuroscience-based approaches have the potential to provide revolutionary advances to foster 

practical solutions to address Army needs (cf., National Research Council, 2009).  Recent 

progress in the neurosciences has greatly advanced our knowledge of how brain function 

underlies behavior, providing our modern scientific foundations for understanding how we sense, 

perceive, and interact with the external world; an understanding that, if properly leveraged, can 

lead to improved capacity for integrating human neurocognitive function with Army system 

design and performance. 

The Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance (CTA) has 

recently been formed by the U.S. Army Research Laboratory (ARL) and a consortium of leading 

industry and academic research partners to address these challenges.  Here, the term 

“neuroergonomics” is used as originally proposed and defined by Parasuraman (2003) as “the 

study of the brain and body at work,” and specified for military applications as “operational 

neuroergonomics” within the CaN CTA as building upon neuroscience, human factors, 

psychology, and engineering to enhance our understanding of Soldier brain function and 

behavior in complex operational settings, assessed outside the confines of standard research 

laboratories.
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However, applying basic research in cognitive science to the understandings of Soldier 

neurocognitive behavior that are needed to enable a neuroscience-based approach to systems 

design is non-trivial.  Several scientific and technological barriers have placed significant 

limitations on the impact of previous research efforts (see section 2.2 for more detailed 

discussions of each scientific barrier): 

B.1  The restriction of experimental designs to highly controlled and impoverished 

stimulus/response paradigms and environments 

B.2   The lack of portable, user-acceptable (e.g., comfortably wearable), and robust systems for 

routinely monitoring brain and body dynamics 

B.3   The failure to record the whole of physical, mental, and physiological behavior that the 

brain controls, and the physical and socio-cultural effects of the environment that impact 

brain function, in sufficient detail and across a sufficient breadth of circumstances 

B.4   The lack of mathematical modeling methods to find statistical relationships among the 

moment-to-moment variations in environmental, behavioral, and functional brain 

dynamics 

B.5   The lack of sufficient data archives and resources to systematically study relationships 

between individualized models derived for cognitive monitoring and individual 

differences in performance, cognitive ability, and personality, relationships that could 

optimize performance of cognitive monitoring systems while lowering requirements for 

collecting individual subject training data 

The limitations that these barriers impose have resulted in a lack of a clear working 

understanding of how the human brain functions when faced with real-world tasks in real-world 

operational settings, as opposed to how it works in highly constrained tasks in highly controlled 

laboratory settings.  In turn, this has meant that previous systems development approaches and 

methods for technological advancement cannot adequately account for the full spectrum of 

capabilities and limitations of human neurocognitive function. 

Within this context, the scientific vision for the CaN CTA has been derived from an ecological 

perspective, as well as concepts of embodied or situated cognition, that considers humans to be 

active agents embedded in a complex and dynamic environment.  Cognitive processes, and the 

brain function that underlies them, have evolved to optimize the outcome of our behaviors within 

our physical and socio-cultural environments.  Acceptance of this position imposes specific 

constraints on our methodological decisions; in particular, this understanding indicates that it is 

literally impossible to understand natural, motivated behavior in artificial scenarios that divorce 

the individual from their context. 
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New approaches to neuroscientific inquiry are therefore needed to overcome the scientific and 

technological barriers that have limited previous research efforts.  The approach taken by the 

CaN CTA aims to address these barriers directly through the following: 

• Development of experimental paradigms that capture the unfolding nature of multisensory 

stimulus streams experienced in real-world environments 

• Development and employment of novel, wearable sensor suites for monitoring brain and 

body dynamics during naturalistic behavior as well as the software for integrating brain, 

sensory and behavioral monitoring systems 

• Acquisition and processing of high-dimensional datasets that characterize physical, mental, 

and physiological behavior, as well as its environmental context, in sufficient detail across 

a sufficient breadth of circumstances  

• Discovery of models and novel methods for the identification and interpretation of 

statistical relationships among high-dimensional data sets characterizing the dynamics of 

environment, behavior, and brain function during complex task performance 

• The acquisition and analysis of data from a large number of individuals allowing 

characterization of inter- and intra-individual variation in order to systematically study the 

relationships between individualized models derived for cognitive monitoring and 

individual differences in performance, cognitive ability, and personality 

Success within this approach, in turn, is envisioned to lead to the establishment of principles on 

which to base advances in neuroscience in terms of translating fundamental research to military 

relevant domains; that is, to establish and articulate fundamental translational principles. These 

principles are envisioned to guide the development of technology solutions that work in harmony 

with the capabilities and limitations of the human nervous system as situated within its dynamic, 

complex environment. 

1.1 The CaN CTA 

The purpose of this report is to present the overall CaN CTA scientific vision and approach, as 

well as describe the three initial transitions that outline paths that will result in practical solutions 

that address particular Army problems or unmet needs.  

In the remainder of this section, we briefly describe the organization and organization of the CaN 

CTA program.  The research program for the CaN CTA has been organized into three technical 

areas (TAs) that are strongly interconnected, comprising a highly integrated research and 

conceptual approach. 
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TA1.  Neurocognitive Performance:  Research efforts under this area are designed to ascertain 

key “signatures” of how Soldier neurocognitive state (i.e., emotional, perceptual-cognitive, 

physical, and physiological) varies in the face of the sensory, perceptual, and cognitive demands 

of the operational environment. 

TA2. Advanced Computational Approaches:  Research within this second area will provide 

novel computational, statistical modeling, and data visualization techniques for the extraction of 

the signatures of Soldier neurocognitive performance, including novel analytic/algorithmic 

approaches to the individualized assessment of Soldier neurocognitive state and performance. 

TA3. Neurotechnologies:  The third area focuses on the research underlying cutting-edge 

technologies for the real-time recording and analysis of environmental, behavioral, and 

functional brain dynamics, and on techniques for exploiting natural human neurocognitive 

function in technological solutions that enhance Soldier-system performance and safety. 

The initial membership of the CaN CTA represents a truly international and multidisciplinary 

team, and comprises membership from the following industry and academic institutions: 

1. DCS Corporation (DCS), Alexandria, VA, USA 

2. University of California San Diego (UCSD), San Diego, CA, USA 

3. University of Michigan, Ann Arbor, MI, USA 

4. University of Texas San Antonio (UTSA), San Antonio, TX, USA 

5. National Chiao Tung University (NCTU), Hsinchu, Taiwan 

6. University of Osnabrück, Osnabrück, Germany 

Additionally, the CaN CTA is pleased to welcome three new collaborating organizations, as well 

as additional research partners at the University of Michigan, whose research efforts as sub-

awardees to the Alliance will bring new perspectives and approaches to addressing the critical 

challenges being addressed by CTA researchers: 

1. Columbia University, New York, NY, USA 

2. University of California Santa Barbara (UCSB), Santa Barbara, CA, USA 

3. University of Pittsburgh, Pittsburgh, PA, USA 

A listing of specific projects and their respective principal investigators is located in the 

appendix.   
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2. Translational Science 

2.1 Army Relevance 

Future Force concepts include the goal of establishing and maintaining information dominance 

by implementing advanced information and communications technologies in a massively 

interconnected, networked battlefield, including an increased reliance on unmanned assets while, 

at the same time, decreasing crew sizes to minimize the number of Soldiers in harm’s way 

(Speakes and Martin, 2008).  Attempting to preserve operational capabilities while decreasing 

local crew sizes and distributing tasking across a broad network of non co-located teams will 

require the future combat Soldier to adopt a significantly modified and quite demanding role.  

For example, as envisioned under Future Force concepts, it is possible that an individual Soldier 

will be responsible for concurrent monitoring of data from unattended ground sensors, 

maintenance of intra- and extra-vehicular communications, operation of non-line-of-sight 

munitions, as well as execution of direct, remote or supervisory control over a vehicle or a 

number of other unmanned ground and/or aerial assets (Fetterman and Plushnik, 2007). 

What is more, due to pervasive threats from enemies who employ unconventional tactics, such as 

improvised explosive devices (IEDs), Army operations will increasingly be conducted either 

from within vehicles that are completely enclosed in armor or from locations remote to the 

battlefront.  Therefore, both mounted and dismounted Soldiers will execute most tasks involving 

interactions with the battlefield through a variety of computerized control and visualization 

systems (Keller, 2004), rather than based on information from first-person immersion in the 

immediate zone of conflict. 

The fact that such operations will inevitably be conducted within a dynamic, multidimensional 

urban context, where battles tend to unfold on shorter temporal and spatial scales, only serves to 

increase the level of demand, threat and risk to U.S. troops.  Because of limitations on both 

technology and human function within such complex operational environments, performance 

decrements are a chief concern of those examining issues related to the development and 

implementation of technologies that can enhance the function of integrated, human-machine, 

sociotechnical systems (Cowings, Toscano, DeRoshia, and Tauson, 2001; Endsley and Kaber, 

1999; McDowell, Oie, Tierney, and Flascher, 2007; Metcalfe, Davis, Tauson, and McDowell, 

2008; Stanton and Marsden, 1997; Stanton and Young, 1998; and van Erp and Padmos, 2003).   

The skilled cognitive and sensorimotor performance that underlies effective mission use of 

human-machine, sociotechnical systems is clearly organized at the level of the nervous system.  

Thus, in order to develop neuroscience-based systems to meet critical Army needs, the CaN CTA 

program has been designed to provide the systematic exploration of the neural underpinnings of 
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Soldier-system performance needed to elucidate new understandings of human neurocognitive 

function as situated within the complex, dynamic task environments that typify Army operations. 

The advances to be gained from the CaN CTA program hold the potential for radical and 

revolutionary changes to systems design and development to enhance Soldier-system 

performance:  The improved understandings of Soldier neurocognitive state and performance 

within the operational environment that are the aim of the Neurocognitive Performance research 

area will provide the fundamental knowledge required to enable a systems design approach that 

can work in harmony with human brain function.  The computational models and data analytic 

methods developed under the Advanced Computational Approaches research area will provide 

Army researchers and engineers not only with new approaches to understanding, but also with 

the tools to develop automated systems and intelligent architectures that integrate real-time 

knowledge of Soldier neurocognitive state to complement and supplement Soldier abilities. 

Moreover, the technologies and tools for functional brain imaging-based detection of Soldier 

cognitive performance that will be developed through the third Neurotechnologies research area, 

as well as planned CaN CTA transition efforts, have far-reaching translational potential, not only 

within Army and Joint service materiel, training, medical, and testing domains, but also 

throughout the civilian science and technology (S&T) community. 

Finally, the overarching aim of the research to be conducted by the CaN CTA is to develop and 

demonstrate principles that govern the translation of research in cognitive neuroscience from 

basic to applied levels and that can guide efforts to best support future Soldier-system 

technological development.  Such principles must be both grounded in data and theory from 

basic cognitive neuroscience research and reflective of a deep understanding of how the human 

brain, body, and sensory systems work in concert to accomplish tasks within militarily-relevant 

operational contexts.  Once established, these translational principles will be fundamental in 

driving and speeding the transition of Army basic and applied research efforts into high-impact, 

mission-enabling technologies.   

2.2 Scientific Barriers and Hurdles 

The main problem that the CaN CTA is addressing is that mission-enabling technologies and the 

methods for technological advancement do not adequately account for the capabilities and the 

limitations of human neurocognitive function.  In large part, this state of affairs can be attributed 

to the S&T community lacking the theory and tools required to provide a clear working 

understanding of how the human brain functions when faced with complex real-world tasks in 

real-world operational settings, as opposed to how it works in highly controlled experiments in 

highly constrained laboratory settings.  To fully understand Soldier neurocognitive performance 

in a manner that can support a neuroscience-based systems design approach, it is critical to 

directly study and precisely quantify the natural interactions among Soldier brain, behavioral, 

sensory, and performance dynamics as situated within complex task environments.
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Five conceptual and technological limitations have thus far precluded our capability to leverage 

advanced technologies to address the lack of knowledge regarding human brain function as 

situated in the real world. 

B.1 The restriction of experimental designs to highly controlled and impoverished 

stimulus/response paradigms and environments. 

Both human behavior and the environment within which it unfolds are rich, dynamic, and 

complex.  To harness the complex dynamics of environment and behavior, the scientific study of 

human performance has traditionally employed paradigms that aimed at simplicity in both 

stimuli and measured behavior.  The vast cacophony of sounds that makes up the auditory 

environment, for example, has typically been reduced to single frequency, limited duration 

“beeps,” while the rich, continuous array of visual contours, colors, and contrasts present in the 

natural visual environment has typically been replaced in laboratory experiments with spatially, 

temporally isolated simple patterns, gradients, or light flashes with stereotyped and tightly 

controlled properties (contrast, luminance, color, etc.).  Motor behavior, in like fashion, has often 

been studied through single joint (e.g., button press), single limb (e.g., point and reach), or 

simplified whole-body (e.g., standing) actions.  However, as discussed above, to understand 

natural behavior, it is critically important to migrate research from such controlled tasks and 

environments into those that reflect the complex interactions between natural behavior and the 

natural sensory world within which it is embedded.  Perhaps the most potent evidence for such a 

position is to be found in arguments articulating a fundamental disconnect between observations 

in laboratory settings and those obtained from within a real-world context (Kingstone et al., 

2008); that is, what is seen in the laboratory may not (and often does not) necessarily represent 

how the brain actually functions when presented with a real task and situated in a real-world 

setting (Foerde et al., 2006). 

B.2 The lack of portable, user-acceptable (e.g., comfortably wearable), and robust systems 

for monitoring brain and body dynamics. 

If we aim to observe, in a precisely quantifiable fashion, humans performing realistic tasks as 

naturally as possible within operationally relevant contexts, then improvements must be made to 

current methods of instrumentation.  That is, in order to allow for reasonable inference regarding 

natural behavior in such contexts, human participants must be allowed to behave as they would, 

without being encumbered by extensive arrays of sensors, leads, power supplies, and processing 

units.  At the same time, a considerable array of sensors is necessary to capture sufficiently 

precise and detailed information regarding brain and behavioral dynamics, especially to avoid 

confounds due to the behaviors being performed as well as environmental fluctuations that may 

introduce variable levels of artifact into the data.  Thus, an ideal monitoring system would be 

comfortably wearable for participants as they perform natural behavior and yet would also 

contain a complete and robust array of sensors to provide the detail necessary for understanding 

true, contextually situated behavior.
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B.3 The failure to record the whole of physical, mental, and physiological behavior that the 

brain controls, and the physical and socio-cultural effects of the environment that impact 

brain function, in sufficient detail and across a sufficient breadth of circumstances. 

The evolution of the human brain has been shaped by the need to adaptively optimize the 

outcome of our behavior within the context of our three-dimensional (3-D) environment.  

Imaging studies show that human brain systems that organize our decision making involve the 

same systems as those that organize our motor behavior (Rizzolatti et al., 2002).  Likewise, the 

ways we think about and communicate abstract concepts are often firmly based in our bodily 

experience in the 3-D world (e.g., “Let’s get in touch.”… ‘Time marches on.”…).  The 

conceptual meaning of this argument is that brain function cannot be understood in isolation 

from the behavior that is to be controlled and the context within which it is to be controlled.  Yet 

the traditional enterprise of science has followed a course that has led to a fractionation of our 

understanding of the whole of human behavior into relatively disjoint pieces falling within the 

respective purviews of individual academic domains.  Specific brain function (e.g., the behavior 

of neurons and neural circuits), for example, has fallen under the large umbrella of neuroscience, 

while emergent properties of neural function (e.g., cognition, perception, etc.) have traditionally 

been studied within the cognitive and psychological sciences and, finally, physical actions 

themselves have been the subject of movement science and biomechanics.  Although broader 

consideration of the whole ensemble of behavior, particularly relations between motor and 

cognitive aspects, has begun to appear more frequently in the literature (c.f. Middleton and 

Strick, 2000; Rosenbaum, 2005), it remains a fundamental challenge to build the database of 

collective knowledge regarding how the brain works while it is actively organizing and 

executing cognitive and physical action within the natural environment and across a set of tasks 

representative of the natural functional repertoire of the skilled human making strategic decisions 

based on accumulating streams of natural sensory data. 

B.4 The lack of mathematical modeling methods and software to find statistical relationships 

between moment-to-moment variations in environmental, behavioral, and functional 

brain dynamic recordings.   

Beyond the acquisition of data sufficient to draw inferences regarding natural human behavior 

within rich, real-world settings is the need for analytic tools to detect and identify patterns and 

relationships within those data.  For example, the focus of most traditional analyses in 

psychology, biodynamics, and neuroscience has been on modeling repeatable and (often) passive 

interactions allowing the use of simple response averaging methods and second-order statistics.  

Currently, however, there are increasing needs to model nonlinear interactions in biological and 

cognitive systems, and develop methods to identify complex patterns in huge datasets using new 

information-based statistical methods.  Consider Soldiers and commanders faced with unfolding 

challenges in complex operational environments who need to make operational decisions by 

interacting with multiple streams of incomplete and possibly misleading information.  Optimum 

models of their learning and decision-making processes cannot simply combine separate 
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psychological, biodynamic, and neurodynamic models, as these all interact in complex (often 

nonlinear) ways.  True understanding of human behavioral decision making under stress in 

complex operational environments, therefore, requires direct, quantitative, and model-based 

study of brain, behavioral, sensory, and performance dynamics, based on their simultaneous 

measurement in complex, operationally relevant environments and their joint analysis accounting 

for their higher-order interactions and relations. 

B.5 The lack of sufficient data archives and resources to systematically study relationships 

between individualized models derived for cognitive monitoring and individual 

differences in performance, cognitive ability, and personality, relationships that could 

optimize performance of cognitive monitoring systems while lowering requirements for 

collecting individual subject training data. 

Typical studies of human cognitive function using brain imaging collect data from 10–40 

subjects with goals of (1) determining a population mean and variance, the variability in the 

measures of interest thereby assumed to be distributed in a Gaussian manner across the subject 

population, or (2) determining the difference between two such subject group means with, most 

often, Gaussianity and equal variances assumed for both groups.  However, increasingly 

cognitive, brain morphogenic, and neurogenetic studies reveal fine differences in cognitive 

abilities and style that limit overall performance of human-machine systems that do not adapt 

themselves to individual operator proclivities and characteristics.  Development of principles 

governing construction of individually adapted human-system interfaces is the principal aim of 

the CaN CTA. 

2.3 The CaN CTA Scientific Vision 

Across the broad spectrum of Army operations, Soldiers and commanders are expected to 

continually make decisions based on distributions of information across various temporal and 

spatial scales that they acquire by active attention to and interaction with multiple audio, video, 

and/or tactile information streams.  Successful decision making in such environments requires 

operator recognition of the overall significance of accumulating information so as to 

continuously maintain situational awareness and answer operationally relevant command 

questions posed by events.  Enabling optimized decision making defined in this manner requires 

an understanding of the intimate relationships between the Soldier and the operational 

environment as mediated by physiology, cognition, and overt behavior. 

We posit that applying basic research in cognitive neuroscience to understanding Soldier 

neurocognitive behavior within these dynamic, complex environments will be most fruitful if it 

can continually and successfully monitor and interpret brain/behavioral processes, indexing 

(1) the depth, distribution, and shifting of operator attention; (2) the operator’s appraisal of the 

significance of incoming information; (3) the emotional context (e.g., motivation and intent) of 

the operator’s actions; and (4) the impact of physiological state (e.g., fatigue, stress, arousal) on 

cognitive and motor performance.  In turn, such understandings are required to develop systems 
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that can exploit the natural properties of human neurocognitive and behavioral function to 

compliment and reinforce both individual and group operator abilities under dynamic and high 

information loads, as well as under circumstances of multiple objectives with differing levels of 

risk and reward.  In other words, these understandings are needed to enable the design and 

development of systems whose ultimate purpose is to enhance Soldier-system capabilities to 

more effectively meet mission-critical demands. 

Objectives such as these make observing and modeling how distributed brain processes support 

natural, active, and ever-varying behavior and cognition perhaps the most important challenge to 

successful translation of principles and methods from cognitive neuroscience.  As articulated in 

ecological psychology and, in particular, in Gibson’s (1979) Theory of Affordances, humans are 

active agents, continually engaged in actively attempting to fulfill their needs and desires within 

a complex and dynamic environment, often in concert and/or competition with other human, 

animal, and mechanical agents.  Such influences and constraints have served to shape the 

evolution of the human brain by means of optimizing the outcome of our behavior. 

At the same time, concepts tied together under the terms “embodied cognition” and/or “situated 

cognition” have become increasingly important in cognitive science and neuroscience.  In a 

similar fashion, these concepts have been formed around the view that cognitive processes have 

evolved to optimize the outcome of our body-based behavior within our 3-D environment 

(Anderson, 2003; Clark, 1999; Garbarini and Adenzato, 2004).  Key principles, or assumptions, 

include the following: 

• Perception and cognition support action. A primary function of human perception is to 

assist motor control (Churchland et al., 1994; Reed, 1982).  For example, the dorsal visual 

pathway directly supports visually guided actions such as grasping (Goodale and Milner, 

1992).  In monkeys and humans, motor neurons involved in controlling tools are active 

when pictures of tool use are viewed, even in the absence of overt motor actions or 

planning (Rizzolatti and Arbib, 1998). 

• Cognition is situated and time-pressured.  New information is integrated into our 

continually evolving cognitive environment, allowing us to adapt to and predict how events 

in our current environment may be influenced by our actions.  Action-motivating events 

typically require timely, environment- and situation-appropriate action selection.   

• We actively interact with our environment to gain and hold situational awareness.  Our 

typical feeling that we “can see everything” around us rests on the feeling that what we see 

gives us enough information to know where to actively look for further information, when 

and if it becomes of interest.  To further reduce our brain memory and processing load, we 

actively manipulate our environment.
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• Features of our environment are integrated into our cognitive system.  Our brain’s body 

image extends beyond our physical body (Maravita and Iriki, 2004).  For example, a tennis 

player’s racket becomes an integral part of the player’s brain/body “action system” (Reed, 

1982), influencing the environment (the ball) to shape future events (the opponent’s 

return). 

• Our imagination and abstract cognition are also bodily experience based. Even 

imaginative and abstract cognition, independent of direct physical interaction with the 

environment, are body-based.  For instance, sub-vocal rehearsal of contents in verbal 

working memory involves the same brain structures used for speech perception and 

production (Wilson, 2001), and imagining limb movements produces activity in the same 

brain areas involved in producing the actual movements.  We interpret “abstract” linguistic 

metaphors and even abstract mathematical entities within (“as-if”) virtual environments, 

such as when we “look forward” to the future, or imagine “the number line” (Núnez, 2006).  

Emotions may similarly involve somatic “as-if” states and events (Damasio et al., 2000). 

Acceptance of these principles imposes particular constraints on the methodological decisions 

one must make when attempting to understand natural behavior in realistic environments.  In 

particular, such concepts dictate that it is literally impossible to understand natural, motivated 

behavior in artificial scenarios and situations that divorce the individual from the context.  In 

short, the reductionist paradigms that have thus far defined the “normal science” behind studies 

of human behavior provide information that is impoverished to the extent that the true nature of 

human performance appears intractable.  Indeed, recent findings have demonstrated the 

importance of context in the differential engagement of neural resources during task performance 

(Foerde et al., 2006), supporting the idea that laboratory-based studies isolated from real-world 

experience may generate fundamental misunderstandings of the underlying principles being 

investigated (cf., Kingstone et al., 2008).  Therefore, it is incumbent upon cognitive neuroscience 

to more adequately address the multiple hitherto unanswered questions of how distributed brain 

dynamics support complex, motivated actions within dynamic and only partially predictable real-

world operational contexts. 

True understanding of human behavioral decision making under stress in complex operational 

environments, therefore, requires direct study of the interactions among brain, behavioral, 

sensory, and performance dynamics in the context of task and environmental dynamics, based on 

their simultaneous measurement and joint analysis.  In other words, cognitive neuroscience must 

develop new approaches to augment traditional ones that have largely divorced human behavior 

from the richness of its physical instantiation and context in order to represent it through the 

activity of a few neural populations in the cerebral cortex.  These new approaches—both in terms 

of experimental paradigms and data analytic methodologies—must, as much as possible, mine 

the full spectrum of information available throughout the natural behavioral context for insights 

into fundamental neural principles that guide the organization of motivated action in real-world 

environments. 
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3. The CaN CTA Approach to Translational Science 

Providing solutions to enhance neurocognitive human-system performance demands new 

approaches to basic science.  Here we outline such an approach that identifies and develops 

fundamental principles translating cognitive neuroscience-based theory and observations to 

enabling technologies that enhance performance in militarily-relevant environments.  

Specifically, the CaN CTA research program aims to develop neuroscience-based principles that 

focus on how best to assist people to operate in complex, mixed-initiative system environments 

in which dynamic, complex information streams must be integrated across multiple spatial and 

temporal scales.  The CaN CTA approach focuses on two factors:  first, we directly address the 

scientific barriers outlined in section 2.2 to enable translational science; and second, we execute 

translational science within specific neurocognitive performance domains. 

3.1 Addressing Scientific Barriers to Enable Translational Science 

The CaN CTA will adopt an approach that directly addresses the five scientific and technical 

challenges identified in section 2.2. 

B.1 Addressing the restriction of experimental designs to highly controlled and impoverished 

stimulus/response paradigms and environments. 

Despite the advances obtained through the use of functional neuroimaging modalities over the 

past few decades, the physical and temporal constraints of technologies such as functional 

magnetic resonance imaging (fMRI) and positron emission tomography (PET) have severely 

limited the scope of brain imaging during production of naturally motivated motor behavior, e.g., 

behavior involving whole body motion in normal 3-D environments.  Thus, the use of such 

methods has forced investigators to observe neural function separate from its natural behavioral 

context. 

It is our position that, currently, electroencephalography (EEG) is the only brain imaging 

modality that involves sensors light enough and low-powered enough to allow near-complete 

freedom of movement of the head and body with sufficient time resolution to record brain 

activity on the time scale of natural behavior.  Therefore, EEG is the clear modality of choice for 

brain imaging of humans performing tasks involving natural movements in real-world 

operational environments. 

Unfortunately, because of how EEG has traditionally been used to study neurocognitive function, 

limitations in its method of analysis has forced investigators to make trade-offs in terms of the 

fidelity and nature of behavior observed.  In particular, traditional EEG paradigms severely 

restrict body, head, and eye movements of participants—largely out of fear of introducing non-

brain artifacts into the EEG data records. In traditional EEG experiments, researchers have 
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typically measured only minimal participant behaviors; usually stereotyped button press 

responses to a limited set of discrete, temporally distinct, and suddenly presented stimuli.  

Because of the perceived difficulty of separating brain EEG data from non-brain artifacts, 

participants in such EEG experiments have been asked to sit still, suppressing or minimizing 

natural eye and head movements, waiting for stimulus onsets and then making relatively 

infrequent responses involving minimal limb movements (typically, pressing finger 

“microswitches”) to convey their selections from among a discrete, limited, and artificial range 

of choices. 

In well-established psychophysiology paradigms, simple EEG response averages that are time-

locked to events in a number of a priori defined categories are then extracted from the brain data, 

reducing its complexity to a few averaged traces that are further collapsed into an even smaller 

table of peak amplitudes and latencies.  Researchers then look for reliable relationships between 

these few summary values and a single behavioral dependent variable (e.g., the button the 

participant chose to press in each trial).   

This approach essentially attempts to reduce the complexity of the recorded EEG dynamics (now 

easily recorded with a bandwidth of a million or more bits per second) to near the bandwidth of 

the recorded behavior (typically less than one button selection per second) by averaging across 

epochs time-locked to sets of events assumed to have similar brain dynamic consequences.  Yet, 

given the complexity and marked moment-to-moment variability of human EEG dynamics, as 

well as the brain’s central role in optimizing the outcome of behavior in the face of ever-

changing physical and cognitive circumstances, it is unlikely that this reductionist, a priori 

approach will yield further high-payoff advances in understanding how distributed brain 

dynamics support natural operator behavior and processing of real-world operational 

environments. 

From a mathematical point of view, then, the basic problem outlined above is that complex 

functional relationships between two or more high-dimensional and highly variable signals (e.g., 

brain dynamics and overt behavior) cannot be well characterized by constraining each to a few 

average measures and then comparing them.  Rather, we argue that what is needed is a new and 

radically different approach incorporating better, higher fidelity recording and modeling of the 

full spectrum of information regarding relationships between neural and physiologic function, 

cognition, and overt behavior. 

The approach being taken within the CaN CTA program is, therefore, to combine data from 

multiple, data-intensive sources so that the information latent in the observed brain/body/system 

dynamics may be identified as described above.  The CaN CTA research then intends to develop 

novel computational and mathematical modeling methods to discover functional and statistically 

reliable relationships between simultaneously recorded brain, behavioral, and sensory dynamics. 

Important issues to be addressed are how to extract information that is invariant, stable, and 

robust to changes and/or degradation of the monitoring environment.  Further, we want to be 



 14 

proactive in enhancing the operator’s cognitive and perceptive abilities, not reactive after the 

fact. For example, we want to predict when a human operator is likely to experience cognitive 

overload or incapacity prior to or at time of its first occurrence.  Also, we would like to identify 

immediately when an operator has hastily made a command decision (e.g., by button press) that 

the operator now regrets.  

To approach the richness and multidimensional variety of Soldier experience in relevant 

operational environments, Simulation and Demonstration phase experiment tasks will be 

complex.  In particular, they will require operators to integrate information across multiple 

streams in different modalities.  Operators will thus be required to continually ask themselves, 

“To which information channel should I attend now to best maintain my awareness of the 

operational situation? Should I actively query or redirect any information channels? Do I have 

information I should I send my commanders and/or remote team members? Do I need to make a 

command decision to direct remote team members?  If so, what decision?”  

The main Command Environment Simulator (CES) experiment to be conducted at the of UCSD 

may, for instance, involve an extended operational game space in which ally, foe, and indifferent 

agents will move and act.  For example, in an urban conflict simulation, unnumbered, 

autonomous competitive agents (foes) may enter the 3-D game space (an urban neighborhood) at 

different rates of speed under stochastic control.  Numbered, semi-autonomous cooperative 

agents (allies) respond to the commands of the operator stationed in a home vehicle command 

post.  The operator may decide to order an ally to move so as to neutralize the advance of a foe.  

The operator will see displays showing simulated views from  

(1) video cameras on the vehicle; (2) a (slowly) movable robot video camera; and (3) a (slowly) 

movable overhead still camera drone.  The operator will receive speech communications from 

allies and occasionally from an off-map commander.  

In the scenario thus described, the operator’s task would be to position allies so as to neutralize 

threats from moving foes.  The visual displays (vehicle, robot, drone) would each give spatially 

limited egocentric and allocentric views of the operational space on different spatial (distance) 

and temporal (update rate) scales.  Speech communications from allies about foe locations and 

movements would either be given either from an egocentric perspective (“Foe approaching 

quickly”) or an allocentric perspective (“Foe moving west slowly”), and would sometimes be 

misleading or inaccurate.  Location-based speech communications would be egocentric (“I am 

two blocks north and one block east of you, facing west”).  Spatial auditory and vibrotactile 

reinforcement might be used, if shown effective in earlier experiments.  All experimental events 

would thus be recorded along with brain/body imaging data from freely moving experiment 

participants to create a large database for studying relationships between operator attention-

shifting and decision-making success, and model neurobehavioral differences between subjects. 
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B.2 Addressing the lack of portable, user-acceptable (e.g., comfortably wearable), and robust 

systems for monitoring brain and body dynamics. 

Portable high-density EEG systems are already available to study the EEG dynamics 

accompanying motivated actions in normal 3-D environments.  However, a long-missing link 

between advancing the understanding of EEG signals and practical workplace applications has 

been the need to use wet gel to adhere EEG electrodes to the scalp and the need to bring scalp 

impedance of these contacts down to near 5 kΩ by abrading the scalp with a blunt needle or 

equivalent before each electrode application.  

To enable high-quality EEG monitoring of naturally moving subjects, EEG systems must have 

characteristics not available in current brain imaging systems.  To support dense spatial 

sampling, EEG sensors must be small and lightweight and not require special skin preparation.  

Further, the ideal system should avoid the risk of electrical bridging between nearby contacts by 

avoiding the use of conductive gel.  To minimize weight and susceptibility to system movement 

artifacts, EEG acquisition and amplification circuits must also be small, lightweight, and battery-

powered.  To maximize mobility and allow near real-time use of the recorded data or measures 

derived from it, they may use wireless telemetry.  Continuing research into microelectronic bio-

sensors has led to several dry electrode designs (Alizadeh Taheri et al., 1996; Gondran et al., 

1995; Griss et al., 2001), making truly mobile, wireless EEG systems incorporating dry sensor 

technology and small, lightweight, wearable data acquisition circuits now feasible and available 

for current experiments. 

Our Alliance includes a team at NCTU, Taiwan (C-T Lin, lead), that is designing, building, and 

testing light, wearable, wireless, low-cost, high-density, microelectronic EEG systems with 

successively higher sensor densities.  NCTU investigators, along with UCSD research partners, 

have recently demonstrated the feasibility of using dry microelectromechanical-system (MEMS) 

EEG sensors and miniaturized supporting hardware/software to continuously collect EEG data 

from four frontal non-hairy scalp sites in a realistic virtual-reality-based (VR) driving simulator 

(Lin et al., 2008) shown in figure 1.  In the study of Lin et al. (2008), a signal-processing module 

was programmed to assess fluctuations in individuals’ alertness and capacity for cognitive 

performance—accurate steering in a realistic driving simulator (left center)—based on EEG 

signals measured from the forehead by 4–8 dry electrodes embedded in the frontal brim of a 

baseball cap.  The system also delivers arousing feedback to the driver (upper right) to maintain 

performance.  This platform can be programmed to function in ways appropriate for other brain-

system interface applications (Lin et al., 2008). 
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Figure 1.  A wearable and wireless dry-electrode (WWD) EEG system that  features dry 

MEMS EEG sensors (lower left), low-power signal acquisition, amplification 

and digitization, wireless telemetry (upper left), with online signal processing.   

Despite such successes, more development and testing are needed to miniaturize the supporting 

hardware so as to collect high-density EEG data (64 channels or more) robustly and continuously 

from unconstrained, freely moving subjects in everyday environments.  One of the biggest 

challenges to the current MEMS-based dry electrodes is the ability to acquire EEG signals from 

hairy scalp, as the current NCTU MEMS electrode is too short to “penetrate” the hair and make a 

good skin contact.  The NCTU team has recently explored a potential remedy to this problem 

using a small dry electrode array with longer contact “fingers” (figure 2).  The NCTU team is 

also developing a flexible electrode-supporting polymer substrate to construct the electrode 

“fingers.”  This electrode is constructed of metal embedded with polymer and coated by bio-

friendly silver chloride (AgCl).  Preliminary results have shown a strong correlation (r >0.92) 

between the signals acquired by adjacent conventional wet and the new dry electrodes placed at 

adjacent scalp sites through the hair, indicating strong potential for the future development of 

EEG technologies that can support truly fieldable neuroergonomic systems designs. 

  



 17 

 

Figure 2.  Through-the-hair dry electrode design. A yet newer (07/09), 

low-cost ($0.50U.S.) design (not shown) has “fingers” that 

make varying height and angle contacts with the scalp. 

As with high-fidelity recording of brain activity, recording and analysis of body dynamics, eye 

movements, and physiological function is becoming progressively miniaturized for wearability. 

Methods for capturing unconstrained multi-joint motions of the head, limbs, and trunk in 3-D 

space have evolved rapidly over the last decades, engendering a paradigm shift in the field of 

motor control away from the study of simple movements such as single joint motions to the 

study of more complexly coordinated, multi-joint naturalistic movements.  Positions of literally 

dozens of points on the limbs and body can now be captured with high spatial and temporal 

resolution.  As well, lightweight, wearable eye tracking systems incorporating tiny 

microelectronic scene and eye cameras worn on an eyeglass frame are becoming available 

(http://www.arringtonresearch.com/scene.html). 

B.3 Addressing the failure to record the whole of physical, mental, and physiological 

behavior that the brain controls in sufficient detail and across a sufficient breadth of 

circumstances.   

The intent is to include and leverage information from such sources as overt motor behavior, eye 

movement, heart function (electrocardiography [ECG]), muscular activity (electromyogram 

[EMG]), and brain activity (EEG), as well as context cues regarding the multisensory task 

environment, in order to infer intentionality and examine the cognitive substrates on which 

motivated, goal-directed action is based.  Only by combining these sources meaningfully can the 

information latent in the recorded brain/body/system dynamics be identified.  

We believe that the study of motivated actions, performed within normal 3-D environments via 

combined high-density EEG, full-body motion capture, and eye tracking, essentially constitutes a 

new brain imaging modality, for which members of our Alliance team from the UCSD (S. 

Makeig, lead) have recently proposed the term “mobile brain/body imaging” (MoBI) (Makeig et 

al., 2009).  
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Within the CaN CTA program, MoBI data acquisition will include, but not be limited to, the 

following: 

• High-density EEG.  EEG is the only brain imaging modality with high temporal and fine 

(potentially cm
2
-scale) spatial resolution that is lightweight enough to be worn in 

operational settings.  Because of historical limitations in the size, weight, and cost of 

available high-density EEG systems, early brain-computer interface (BCI) systems have 

been designed to use a minimal number of recording channels.  Recent advances in sensor 

and data acquisition design make mobile high-density EEG recording viable as a potential 

measurement modality.  High-density, as opposed to low-density, EEG data are integral to 

the development of neuroergonomic systems as they provide a larger number of degrees of 

freedom, allowing much more flexibility in segregating brain EEG sources, within the 

context of the advanced data analytic and modeling approaches being developed within the 

CTA program.
 

• Whole-body motion capture (mocap).  To interpret the function and meaning of brain EEG 

source signals, we need to know and understand what processes these signals are actively 

supporting or controlling.  A most important part of this is physical behavior, yet 

heretofore little brain research has focused on the high-density brain dynamics supporting 

unrestricted physical activity—in particular, the distributed brain dynamics supporting 

motivated, whole-body action.  Recent technical developments, however, allow recording 

of robust EEG signals from electrodes placed on the head surface in combination with 

detailed motion capture techniques.  Understanding what aspects of the EEG relates to 

control of bodily actions allows better identification of those aspects of EEG source signals 

that index cognitive processes, including appraisal or evaluation of sensory events, and the 

motivation and intent of physical actions. 

• Wearable eye gaze tracking.  An aspect of behavior monitoring that is most important for 

understanding and monitoring cognitive processes involving visual perception is eye gaze 

and activity tracking.  The human visual system processes both static and kinetic portions 

of the visual scene through a series of typically 3/s to 4/s saccadic jumps and fixations.  

The brain largely uses information gained during fixations to build and maintain 3-D visual 

awareness and direct active visual exploration of the environment, although the ways in 

which it does this are, so far, little understood. 

The main CES experiment to be conducted at UCSD may involve an extended operational game 

space in which ally, foe, and indifferent agents will move and act.  All experimental events will 

be recorded along with the MoBI data to create a large database for studying relationships 

between operator attention-shifting and decision-making success, and model neurobehavioral 

differences between subjects. 
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B.4 Addressing the lack of mathematical modeling methods and software to find statistical 

relationships between moment-to-moment variations in environmental, behavioral, and 

functional brain dynamic recordings. 

The planned research approach within the CaN CTA is one among many new scientific 

initiatives now becoming feasible because of accelerating advances in statistical or information-

based signal processing and modeling.  Many, if not all, of these new methods can be derived 

from Bayesian models of information contained in and conveyed by multidimensional data under 

various modeling assumptions.  Statistics, once dominated by the need for simplifying (second-

order Gaussian) assumptions required to retain closed-form analytic tractability, can now use 

much more data-adaptive and computationally-intensive statistical approaches.  Such approaches 

allow automated discovery of joint higher-order structure in data.  In particular, individual 

differences between subjects in an experiment no longer need to be treated as a cloud of 

Gaussian “noise.”  Nor do differences between experimental conditions need to be isolated by 

the experimental design and then separately tested in different conditions using orthogonal 

planned comparisons.  Within the CaN CTA program, analytic approaches to characterizing and 

interpreting high-dimensional, MoBI data will include the following: 

• Information-based signal processing.  In particular, the independent component analysis 

(ICA), sparse Bayesian inverse, and new “context ICA” methods under development by 

UCSD Consortium members can allow automated discovery of relationships between brain 

dynamics and experimental contexts even in multimodal data from complex experiments.  

Further, individual subject differences revealed by the data can be subjected to the same 

discovery approach, thereby determining from the data themselves, rather than pre-

supposing, the types and directions of relevant between-subjects differences.  The CaN 

CTA program will build on these new methods, discovering the behavioral and brain 

dynamic patterns exhibited by individual operators in certain types of circumstances and 

then building multidimensional pattern recognition algorithms to monitor the appearance of 

these reactions during operationally relevant test sessions and, eventually, field operations. 

• Identifying Links Between Behavior and EEG Dynamics.  Interpreting the multimodal 

MoBI data described above requires development of adequate methods for modeling 

relationships between rapidly changing high-dimensional brain source activities and the 

complexities of natural motor behavior.  To discover relationships between high-

dimensional, synchronously recorded brain and body movement data, they first should be 

nonlinearly transformed in ways appropriate to the nature and origin of each type of data.  

Then, the structure of the transformed joint data may be explored using data-information-

based machine learning methods (Baker et al., 2005) and EEG brain sources imaged using 

statistical inverse imaging methods (Michel et al., 2004; Wipf et al., 2007).  Modeling 

transient coupling between activities of distributed, quasi-independent sources in different 

brain areas is a further important dimension of data mining and modeling research. 
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• Multimodal Brain Imaging. As MoBI technology and analysis methodologies are 

developed, investigations using a wide range of experimental paradigms will become 

possible, perhaps beginning with simple motivated actions such as 3-D orienting, pointing, 

and grasping (Hammon et al., 2008), and finally extending to a wide range of tasks and 

natural behaviors, including biomechanical adaptation and learning, navigation, and social 

interactions in real-world operational environments.  Though many existing experimental 

designs in all these areas might be fruitfully exploited, the tight coupling between EEG, 

novelty, and appraisal of events suggests that these factors receive more explicit attention 

in MoBI experiment designs.  The result of combining these sensor development, data 

analysis, and source imaging technologies should be the development, in coming years, of 

truly dynamic, higher-definition imaging of distributed EEG brain dynamics supporting 

natural cognition and behavior. 

• Exploitation of Graph Dynamics.  In the case of MoBI EEG real-time data capture, we will 

exploit our ability to extract distributed patterns (graphical constellations) of cortical 

dipole-patch activity using our ICA and sparse Bayesian learning (SBL) inverse problem 

solver, to determine appropriate graph invariants (see Ehrenfeucht, Harju, and Rozenberg, 

1997; Graph Properties, n.d.).  We will work with graph invariants (GI) appropriate for 

weighted as well as unweighted graphs, and will experimentally determine those GIs that 

are maximally robust to reasonably sized movements of EEG and body movement sensors 

and changes in EEG connectivity produced by sweat, grime, etc.  A key intent of this 

approach is to greatly reduce the need for non-robust, baseline pre-calibration and tuning of 

the EEG sensors.  We will also determine a list of GIs that encode independent information 

highly correlated with operator cognitive performance. 

• Hierarchical Bayesian Network Modeling.  Using either the raw time series of cortical 

dipole-patch activity data or times series of graph invariants, we will use both hierarchical 

Bayesian networks to obtain or further enhance higher-level features associated with 

cognitive and affective state.  Such processing can also produce features that are robust to 

sensor and environmental degradation or be used to enhance the stability of GI features.  At 

every level of the Bayes network, we will have a time series of abstracted state information 

will be used to estimate current, and predict future, operator state using the theory of 

Markov decision processes (MDP).  For any given human operator, a MDP model can be 

refined to predict how that operator will respond in a specific situation.  For example, it 

should be possible to determine if the operator is risk-preferring, risk-neutral, or risk-

adverse.  It may also be possible to predict how much stress an operator can sustain before 

he experiences a “fight-or-flight” reaction and which of the two alternatives the operator is 

more likely to engage in. 
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B.5 Addressing the lack of sufficient data archives and resources to systematically study 

relationships between individualized models derived for cognitive monitoring and 

individual differences in performance, cognitive ability, and personality, relationships 

that could optimize performance of cognitive monitoring systems while lowering 

requirements for collecting individual subject training data. 

An important source of uncertainty here is the extent to which individualized brain/behavior 

models capable of accurately estimating Soldier cognitive state may require individualized 

model training data that may be prohibitively expensive to collect routinely, while having a 

prohibitive cost in model performance without such training data.  A way out of this dilemma is 

to apply collaborative filtering principles (Han and Kamber, 2006) recently developed to use 

large data archives (including web archives and personal information archives) to build more 

accurate and complete models of individuals from fragmentary data by considering the totality of 

information available about other persons like the person of interest (e.g., in the same physical or 

categorical “neighborhood”).  The CaN CTA will collect a database of brain/behavioral data 

from a sufficient number of subjects to allow exploration of the value of this approach for 

individualized cognitive monitoring in operational settings without requiring a prohibitive 

amount of personal training data to create models for new Soldier subjects. 

Overarching Considerations for Addressing Scientific Barriers 

Outlined above is a MoBI-based approach to addressing five scientific barriers to studying and 

precisely quantifying the natural interactions among Soldier brain, behavioral, sensory, and 

performance dynamics as situated within the operational environment.  The successful 

implementation of such an approach must take into account several factors: 

• EEG sources.  Scalp EEG signals sum source activities arising within cortical domains 

whose local field activity becomes partially synchronized, giving rise to far-field potentials 

that each project, by volume conduction, to nearly all the scalp electrodes, where they are 

summed with differing strengths and polarities (Makeig et al., 2004a). 

• EEG and movements.  It seems likely that the brain may use naturally emergent local field 

synchronies (cortical EEG sources) to focus its extremely high-dimensional synaptic scale 

activity onto much lower-dimensional control of motor behavior.  If so, then regular 

relationships between EEG and motor actions may be found in MoBI data.  Particularly 

salient relationships between EEG and body movements may occur at movement decision 

points, especially pronounced when movements are distinctly motivated, for example, 

quick reactions to threatening events. 

• Loci of expected effects.  Many cortical regions are interactively involved in supporting 

motivated motor behavior—not only primary motor areas directly supporting brain motor 

commands, but also areas supporting motor planning and expectation, perceptual motor 

and sensorimotor integration, and spatial awareness and executive function, including areas 
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directly connected to sub-cortical brain “valuation” systems that support rapid behavioral 

adjustments to anticipated or potential threats, rewards, and errors. 

• Correlation versus causation.  Observed relationships between EEG changes and motor 

actions may not always reflect a direct neural coupling.  For example, continual changes in 

the cortical distribution of alpha band power during inquisitive movements may index 

concurrent shifts in the distribution of sensory attention (Worden et al., 2000) rather than or 

in addition to motor planning or execution processes. 

• EEG artifacts.  A primary challenge to performing EEG brain imaging in mobile 

circumstances is extracting meaningful event-related brain dynamics from signals that 

necessarily include significant non-brain artifacts arising from subject eye movements, 

head and neck EMG activity, cardiac artifacts, line noise, and other non-brain sources.  A 

signal processing approach developed over the last two decades, ICA (Bell and Sejnowski, 

1995) has proven to be effective for EEG decomposition into functionally and 

physiologically distinct source activities (Makeig and Jung, 1996; Makeig et al., 2002).   

ICA decomposition is a data-driven method that results in a set of spatial filters, each of which 

passes information from a distinct information source in the recorded multichannel data (Makeig 

et al., 2004a).  In particular, ICA can be an effective method of identifying and separating several 

classes of artifacts (Jung et al., 2000).  Under favorable circumstances, ICA decomposition of 

continuous or discontinuous high-density EEG data also allows the separate and concurrent 

monitoring of dozens of EEG brain as well as non-brain artifact sources, thus avoiding much of 

the often severe data reduction integral to traditional methods that reject from analysis EEG data 

epochs containing movement artifacts.   

Applied to data from mobile participants, ICA can separate and monitor EMG activity from 

individual head and neck muscles that, since they do not move appreciably and have spatially 

fixed patterns of projection to the EEG electrodes.  ICA can also isolate into a small subspace 

other artifacts whose projections to the recording array are not static but move in spatially 

stereotyped patterns, for example, slow blinks or cardiac artifacts.  Spatially labile, non-

stereotyped artifacts, however, can quickly spew hundreds of unique scalp distributions into the 

data, each de facto independent of the rest of the recorded data and not separable into a low-

dimensional independent component (IC) subspace.  For example, such artifacts may result if 

extreme head and scalp movements produce small movements of many of the electrodes on the 

scalp.  Such spatially non-stereotyped artifacts need to be identified and removed from the 

training data before or during ICA decomposition (Onton et al., 2006). 

• Brain data preprocessing.  Scalp-recorded EEG signals are each mixtures of activity from 

a variety of brain as well as non-brain sources, and the number of possible brain source 

domains (e.g., cortical patches) is quite large.  Thus, the problem of identifying the 

unknown EEG source signals and their individual projections to the scalp sensors from the 

data is a difficult blind source separation and physical inverse problem.  Methods and 
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software for imaging the source dynamics of cortical activity from high-density scalp 

recordings are steadily evolving (Michel et al., 2004).  Applied to EEG data, ICA 

algorithms result in a set of spatial filters that linearly separate EEG into a sum of 

component processes with maximally temporally independent time courses (Makeig et al., 

1996; Makeig et al., 2004a; Makeig et al., 2004b).   

Many IC source processes project to the scalp with a nearly “dipolar” pattern compatible with a 

cortical patch source.  Spatial equivalent dipole location (in or near brain, in or near eyes, or 

scalp muscles) can be estimated using an electrical head model, optimally one built from the 

participant MR head image (Mosher et al., 1999).  Open source software is available (Delorme 

and Makeig, 2004), and use of anatomic magnetic resonance (MR) subject head images can 

produce the most accurate source location estimates (Akalin, Acar and Makeig, 2010).  

However, from the point of view of dynamic analysis, ICA decomposition into separate source 

activities can also be considered a signal pre-processing step to enable further joint analysis of 

the brain EEG and behavioral data. 

• Movement data preprocessing.  Pre-processing of body motion capture data is likewise 

non-trivial. Modern biomechanical data analysis proceeds from recording the changing 

positions, velocities, and/or accelerations, in external world or body-centered coordinates, 

of sensors placed on the body surface, to computing movements of each body and limb 

segment relative to another in a body-centered reference frame, to estimating the time 

courses of the particular muscular forces that produce those joint movements (Poizner et 

al., 1995; Soechting and Flanders, 1995).  Determining joint movements from motion 

capture records is a mathematical inverse problem, as a kinematic transformation is needed 

between trajectories of the recorded body surface positions and those of the underlying 

joint angles (Soechting and Flanders, 1992).  Determining the muscular torques applied to 

the limb segments to produce the observed joint/limb trajectories is a further inverse 

problem requiring a biomechanical model of the body skeleton and musculature (Winter 

and Eng, 1995), for which open source software is becoming available (Delp et al., 2007). 

It is not clear, however, the extent to which EEG changes relate more directly to changes in 

body or body-part position, movement, or muscular activation—or to some combination of 

these.  This uncertainty complicates the development of mobile brain/body imaging models 

of human action. 

3.2 Translational Science Within Specific Neurocognitive Performance Domains 

As stated before, our research program targets operations in complex, mixed-initiative system 

environments in which dynamic, complex information streams must be integrated across 

multiple spatial and temporal scales.  To address this target, the research much address three 

main objectives as preconditions on solving these problems:  help the Soldier-system (1) actively 

maintain situational awareness of the immediate and larger-scale operational environment based 

on ever-changing information delivered concurrently via multiple sensory channels (i.e., 
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visual,auditory, tactile); (2) make sound decisions and develop appropriate courses of action in 

response to unfolding events in their environment, through improved understanding of sensory 

and cognitive processing achieved by combining real-time analysis of operator brain activity, 

body and eye movements, and behavior, with information gleaned from analysis of the sensory 

streams the operators are monitoring; and (3) take into account inter- and intra-individual 

variability in the neurocognitive and behavioral strengths and strategies of operators to optimize 

Soldier-system information exchange to improve the likelihood of success associated with 

making risky decisions.  

While the previous section outlined a MoBI-based approach to overcoming the barriers to 

understanding brain-behavior-environment interdependencies, this section outlines the 

neurocognitive performance domains in which the CaN CTA research focuses on in order to 

accomplish our main objectives and translate basic neuroscience to militarily relevant 

environments.  The performance domains include the following: 

• Alertness.  In low or constant information settings, frank drowsiness and even sleep onset 

may accompany intentions to remain alert and attentive.  Jung et al. (1997) showed that 

human EEG contains abundant and stable information sufficient to alert a computerized 

system that its human operator is drowsy or somnolent—information that is still not 

integrated into human-system interface designs—though in a wide range of settings, 

contra-circadian demands on operator time and attention continue to increase, with 

statistically probable and likely under-appreciated consequences for overall human-system 

performance including increased risk of disasters produced by human performance failure 

(“man out of the loop”). 

• Attention.  We are likely little aware of the extent to which we are continually 

redistributing our attention among sensory, mnemonic, and cognitive channels.  Failure to 

properly scan the environment for crucial information is a hallmark of performance under 

stress.  Even physically scanning across visual information sources with our eyes does not, 

however, guarantee that we effectively attend to significant visual information within our 

field of view.  For example, we may be at the time primarily focusing on receiving and 

evaluating audio information, or we may be daydreaming about a pleasant memory or 

anticipated event.  More research is needed to determine to what extent the depth, 

distribution, and dynamics of attention may be modeled and accurately estimated from 

MoBI data.  A phenomenon to exploit is the known appearance of alpha band (8–12 Hz) 

EEG activity in cortical regions used to monitor relatively unattended sensory channels 

(Gomez-Ramirez et al., 2011; Kelly et al., 2006). 

• Arousal.  The relationship between performance and arousal has long been known to 

assume a well-known inverted U shape, with both under-aroused and over-aroused interest 

and attentiveness dissociated from good performance.  Under-arousal leads to failure to 

explore the sensory environment and recognize consequences of stimulus or event 
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combinations, while over-arousal leads to “tunnel vision” fixation on a particular fact or 

input or even an inability to focus on external inputs at all.  Likely phenomenon to exploit 

here is the appearance of coherent beta band (14–28 Hz) EEG activities in sensory cortex 

during aroused attention (Bekisz and Wróbel, 1993). 

• Appraisal.  Understanding the cognitive significance of operator EEG, eye movement, and 

other behavioral processes logically requires knowledge and understanding of the sensory 

experience of the operator.  This is perhaps the most challenging of the inverse problems 

involved in the development of neuroergonomic systems, as robust computer interpretation 

of the significance of complex natural sensory information (visual, auditory, etc.) is not yet 

within reach.  However, interpretation of EEG signals recorded during shifting of attention 

between any combination of sensory channels may be aided by even partial information, 

e.g., about the degree of predictability of stimulus events that may be gleaned from the 

sensory stimuli themselves. 

Recent work in computational linguistics has shown that statistically defined linguistic surprisal 

(the inverse of sequential word probability) can determine the length of individual fixations 

during text reading, and direct relations between linguistic surprisal and EEG are now well 

established.  In addition, automated speech to text translation is now relatively advanced, as is 

automatic grammatical parsing from text.  More basic research is needed, however, in EEG 

dynamics accompanying speech listening and text reading.  Understanding which aspects of the 

EEG signal are related to what is heard (or read) will help to isolate those signal aspects that 

index an operator’s (“top-down”) appraisal of the speech content.  

Recent work in machine vision has shown the possibility of defining screen regions of bottom-up 

visual interest in video images via statistical definitions of visual surprise, and these have been 

shown to well predict locations of eye fixation.  Basic research is needed to better understand 

which aspects of EEG, psychophysiological, and behavioral signals relate to top-down visual 

search versus responses to events of bottom-up visual interest, and interpret visual information 

acquired during individual eye fixations. 

A potentially valuable capability for MoBI-enabled human system interface designs is the 

capacity to detect self-perceived or unperceived failures to appraise the significance of sensory 

events or event combinations.  A simple case might be failure of brain activity or body 

movements to register an alerting reaction to delivery of a signal to the operator known to require 

urgent evaluation (e.g., a “red warning light”).  A more complex example would be the capacity 

to detect confusion in an operator presented with confusing, incomplete, and/or contradictory 

information. 

• Affect.  Recent EEG analysis has begun to show that our emotional or affectively laden 

brain responses to events that our brain’s limbic system immediately characterizes as 

“good” or potentially “bad” news can be discerned from high-density EEG data (Onton and 

Makeig, 2009).  We are quite sensitive to teammates’ affective characterization of events, 
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as well—a co-worker’s sudden intake of breath may immediately arouse us to shift our 

attention to find the cause of their affectively laden response.  Recent demonstrations have 

shown that automated recognition of unexpected negative events (for example, sudden 

failures of a computer game program to follow operator instructions) can be automatically 

detected from scalp EEG signals and may be used in a human-computer interface to 

improve overall human-system performance.  Rapid fluctuations in brain “good/bad” 

responses to events, if made known to a computer information system an operator is 

controlling, could be used to selectively change display patterns, for example, while the 

absence of an affectively laden brain response to an event the system knows to be 

important (e.g., “Warning light on!”) could cue further useful system actions.  Detection 

and representation of the unexpected abnormal mood of an out-of-sight team member 

might foster better team cohesiveness and performance.  Brain affective responses of 

expert observers (including mental “Oh no!’s”) might also be used to give more effective, 

near-instant and continuous feedback to robotic systems that are being trained to perform 

through experience than manual expert feedback delivery methods. 

• Agency.  Recent work has shown that intention to make a voluntary movement to the left or 

right produces distinct and recognizable patterns of electrical activity on the parietal scalp, 

consistent with locations of spatial planning areas found in invasive animal and human 

fMRI brain studies (Wang and Makeig, 2009).  An information display system that can 

anticipate the motivated actions of its operator(s) might be designed to be easier and more 

efficient to operate than a passive system with no knowledge of operator intent.  

Cognitive and affective aspects of operator intent in making an action may also be crucial in 

optimizing system response.  For example, might a system detect the fact that an operator 

perceives he/she has pressed a button in error, then give the operator an opportunity to confirm 

or rescind the command?  Else, by interpreting the speed of a motor selection gesture plus 

accompanying brain dynamics consistent with perceived urgency, might a system be able to 

usefully refocus its information delivery capabilities to maximize delivery of relevant 

information and feedback, as a human colleague might do? 

4. Transitions 

Over the course of the CaN CTA, the Alliance will perform translational research that builds on 

the information gained through basic research and is envisioned to result in practical solutions 

that address particular Army problems or unmet needs.  Potential endpoints of the envisioned 

research are both products that ultimately are integrated into Army systems and new pathways to 

discovery, which would include new methods of investigation; new approaches for summarizing, 

visualizing, and analyzing data; new measures or biological markers for detecting specific 
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cognitive states or processes such as fatigue, attention allocation, working memory, stress, 

learning, etc.; and new algorithms for differentiating among such states.  

This section outlines three planned transition efforts (TEs) to which the research projects can 

contribute.  These TEs can thus serve as guideposts for investigators as they plan and execute 

respective projects.  The three projects identified were designed to be somewhat progressive in 

nature.  That is, as a close examination of the included timelines will reveal, the 

accomplishments of TE I will feed the objectives and goals underlying the advancement of TE II 

and so on.  

Described below are the three TEs, followed by descriptions of their background, potential 

barriers, timelines, and specific transitions.  Additionally, a corresponding Translational Path 

section is provided within the description of each individual research project in sections 4, 5, and 

6 that explains the connection between each project and these TEs. The three initial planned, 

progressive TEs for the basic research conducted under the CaN CTA are as follows: 

TE I.  MoBI methods for detecting changes in vehicle operator alertness and consequent 

performance-failure prediction (near-term transition to Army systems) 

TE II. Advanced tools for MoBI-based neurocognitive performance assessment (Integrated 

Army and Research transition; near- and mid-term transition to research tools; mid- and 

far-term transition to Army systems) 

TE III. Enhanced design of high-information multichannel crew stations (far-term Army 

transition, 5 years) 

Additional potential transitions, outside of these pre-defined TEs, will be identified as 

appropriate (e.g., opportunity-driven transitions will be developed and described over the course 

of the CTA). 

4.1 TE I:  MoBI for Detecting Changes in Vehicle Operator Alertness and Performance 

Prediction 

A consistent and critical problem for Soldiers lays in maintaining alertness and vigilance while 

performing attention-demanding, long-duration tasks such as driving within dynamic, threat-

laden environments.  This near-term TE integrates basic science and technology into a 

mobile/wireless cognitive-state monitoring system that can assess fluctuations in individuals’ 

alertness and capacity for driving performance via low-density EEG signals.  We aim to integrate 

and demonstrate such a monitor into a military vehicle test-bed. 

4.1.1 TE I.  Background 

Since 1989, Alliance team members at UCSD have conducted fundamental studies (Makeig and 

Inlow, 1993; Makeig and Jung, 1995, 1996; Jung et al., 1997; Makeig et al., 2000) demonstrating 

the feasibility of accurately estimating shifts in an individual operator’s level of alertness, as 
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indexed by changes in their level of performance on a simple auditory target detection task, by 

monitoring the changes in their EEG power spectra or other measures.  Recently, NCTU 

investigator Lin and UCSD investigator Jung have extended this research into EEG-based 

alertness assessment in a continuous driving task (Lin et al., 2005, 2006).  

Alliance team members have also conducted basic research underlying cutting-edge technologies 

for the real-time joint recording and analysis of environmental, behavioral, and functional brain 

dynamic variables.  For example, team members at NCTU and UCSD have recently 

demonstrated the feasibility of using dry MEMS EEG sensors and miniaturized supporting 

hardware/software to continuously collect EEG data from four frontal non-hairy scalp sites in a 

realistic VR-based driving simulator (Lin et al. 2008). 

This TE will integrate results from over a decade of research in Alliance partner laboratories 

related to the Neurocognitive Performance TA and the Neurotechnology TA, providing a real-

time Soldier monitoring system that can be implemented into a military vehicle test-bed. Further, 

this transition effort will provide a near-term demonstration of the translational process that can 

serve as a guide for the successful transition of future CaN CTA research products. 

4.1.2 TE I.  Transition Barriers and Hurdles 

Previous research has suggested that an operator alertness/performance-failure prediction 

monitor for in-vehicle driving may be sufficiently robust to be accomplished without fully 

addressing scientific barriers B.3–5, though we expect their reliability to further increase as 

barriers B.3–5 are addressed.  This is one of the primary reasons that this effort was selected as 

the first TE, and as a near-term demonstration of the translational process.  The primary 

scientific barriers that this effort will address are as follows. 

B.1 The restriction of experimental designs to highly controlled and impoverished 

stimulus/response paradigms and environments. 

The monitor must be robust against a variety of subject states, task conditions, and 

environmental scenarios that are expected in real-world situations. 

B.2 The lack of portable, user-acceptable (e.g., comfortably wearable), and robust systems 

for monitoring brain and body dynamics. 

The monitor needs to able to use reasonably low-density EEG data robustly and continuously 

without the use of conductive gels or skin preparation from harnessed, seated operators that are 

also free to dismount their vehicles.  Available dry EEG sensor density is expected to increase 

rapidly in coming years, and the value of spatial filtering possibilities afforded by higher-density 

recording, for accuracy in both non-brain artifact rejection and relevant brain source monitoring, 

has been well established (e.g., Makeig et al., 2004a).  However, previous results (e.g., Jung et 

al., 1997) suggest that individualized or even common low-density EEG-based models can 
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provide accurate continuous alertness estimates, at least in laboratory settings including use of 

simulated vehicle movements (Lin et al., 2008). 

B.5 The lack of sufficient data archives and resources to systematically study relationships 

between individualized models derived for cognitive monitoring and individual 

differences in performance, cognitive ability, and personality, relationships that could 

optimize performance of cognitive monitoring systems while lowering requirements for 

collecting individual subject training data. 

The monitor should be able to use a model of brain/behavioral changes in alertness not requiring 

extensive pilot training data from each Soldier, while respecting operator differences in, e.g., 

baseline EEG that may be present in recordings from each new Soldier subject.  Applied studies 

under TE I using a number of subjects will allow early investigation within the CTA of the 

extent to which individualized data models perform better than a common data model, while 

computational approaches to characterizing relationships between individual and group data, 

developed under B.5 will allow first testing of methods to quickly individualize a common 

model from partial (baseline) EEG data on each individual. 

In addition to the scientific barriers, the translational process will have to address technical 

challenges.  This primary technical challenge that the operator alertness/performance prediction 

monitor will face is as follows:  

• The monitor must be compatible with integration into current Army equipment in a manner 

that is physically robust, safe, and acceptable to the user. 

4.1.3 TE I.  Translational Timeline 

The areas underlying this transition are threefold.  First, we will develop and test a wearable, 

wireless, dry-electrode, low-density, EEG-based system that can be used in field-able scenarios. 

This system will be capable of data acquisition, online artifact cancellation and signal 

processing.  Second, we will develop and validate robust EEG algorithms for monitoring 

alertness and cognitive performance estimation in militarily relevant environments.  Third, we 

will integrate a ruggedized, wearable, EEG-based system into a helmet suitable for 

experimentation in a military vehicle test-bed.  The planned transition of this ruggedized, 

wearable EEG-based monitor will be to an Army applied research and development program that 

will implement this monitor into adaptive brain-machine interfaces.  This timeline is depicted in 

figure 3. 
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Figure 3.  Translational timeline depicting expected progress in TE I. 

In Year 1, the Alliance translational research projects for this TE will support the development 

and evaluation of a new 16-channel mobile and wireless EEG system to acquire signals from all 

parts of the scalp.  In year 2, the Alliance will (1) test the long-term signal quality of EEG signals 

in tasks involving a wide range of events requiring active evaluation by operators in the real-

world environments, and (2) develop, test, and demonstrate a wearable/wireless alertness 

monitoring and management system. These efforts are described in the Alliance research projects 

supporting this transition, which include the following: 

• MoBI-based Feedback for Training Automated Systems and System Operators (MBF) 

• Operator Dynamics of Event Appraisal (ODE) 

• Using Neural Activity to Predict Attentional Lapses During Multisensory Task Scenarios 

(PAL) 

• Effects of Vehicle Motion and Cognitive Fatigue (VMF) 

• Wearable EEG Development and Testing (WDT) 

In addition to the research projects, this transition will require specific efforts to address the 

following technical challenges:
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• Through years 1 and 2 ARL will lead an effort with UCSD to integrate Alliance developed 

sensors within a standard Army helmet for testing of feasibility and potential safety 

concerns.  This effort (lead, Dave Kuhn) will include examining the feasibility of 

integrating several sensor and data acquisition options and finally constructing a prototype 

in-helmet system. 

Critical Points 

There are two critical points for the successful completion of this project. 

C.1.  The specifics of the wearable EEG-sensor system will be agreed upon. 

C.2.  The monitor will be transitioned to the applied Army research program. 

4.1.4 TE I.  Transitions 

This TE will culminate with the integration and demonstration of a mobile/wireless cognitive-

state monitoring system that can assess fluctuations in individuals’ alertness and capacity for 

driving performance via low-density EEG signals in a military vehicle test-bed.  Through a joint 

U.S. Army Tank-Automotive Research Development and Engineering Center (TARDEC)-ARL 

mission program, the alertness/performance monitoring system will be integrated into three types 

of applications:  (1) an individual-based fatigue mitigation system, (2) a team-based warning 

system, and (3) an adaptive training system.  The mitigation and warning systems will be 

designed to enhance Soldier-system performance for driving tasks.  The training system will be 

designed to reduce training time. 

The longer-term significance of the TE includes (1) demonstrating a viable prototype in-helmet 

system for high quality EEG capture and evaluation in a wide range of military relevant 

environments; (2) enabling safe and secure EEG-based monitoring in operational tests to include 

use in system development, test and evaluation, and (potentially) in the field; and (3) providing a 

proof of principle for other types of cognitive-state monitoring and alternative uses such as in a 

traumatic brain injury (TBI) detection or monitoring system.  In addition, by enabling recording 

of brain dynamics in more complex operational environments than is currently possible, there 

will be broader implications for later transitions in other areas for all of the research supporting 

the near-term development of a mobile/wireless cognitive-state monitoring system that can 

assess fluctuations in individuals’ alertness.   

For example, having a capability to safely and reliably record brain dynamics of Soldiers in 

operational environments will enable future investigations of Soldier neurocognitive function in 

more diverse operational environments (relating to TA I).  In like fashion, transitions from other 

TEs will contribute to further enhance the alertness technology.  For example, developing the 

capability to integrate and synchronize multiple streams of data will enable integration of 

additional contextual data that could improve the accuracy of estimating operator alertness just 

as the further development of data analysis and mining tools and techniques (TA II) may lead to 



 32 

other applications for brain monitoring beyond just fatigue (e.g., detecting shifts in attention, 

cognitive load, and TBI). 

4.2 TE II.  Advanced Tools for MoBI and Neurocognitive Performance Assessment 

A critical need for translation of neuroscience to operational environments is the appropriate 

hardware and software tools for collecting, analyzing, interpreting, and using brain imaging data 

within real-world environments.  This planned TE provides tools that will enable more advanced 

monitoring of Soldier performance in operational environments as the research evolves from 

laboratory to simulation to real-world environments.  Specifically, this transition effort focuses 

on the development of (1) sensor technologies and mobile recording systems; (2) large-scale 

databases; (3) hardware and software for integrating and synchronizing multiple data streams and 

data formats; and (4) algorithms for mining, analyzing and visualizing data for investigating 

relations among multivariate data sets comprised of data spanning different temporal and spatial 

scales and formats.  Two primary types of transitions will occur from this effort: first, in the near 

and intermediate term, user-friendly research tools will be implemented that are necessary for the 

Department of Defense (DoD) translational neuroscience community and the scientific 

community at large; and second, in the intermediate to long-term, real-time tools will be 

implemented that enable advanced Soldier monitoring and brain-in-the-loop system design. 

4.2.1 TE II.  Background 

Alliance partners at, UCSD, NCTU, UTSA, DCS Corporation, and ARL have a long history of 

developing hardware and software tools for collection, visualization, analysis, and interpretation 

of data ranging from basic neuroscience to Soldier-system performance.  For example, partners 

at UCSD have a 13-year history in developing an interactive, freely available Matlab toolbox for 

processing continuous and event-related electrophysiological data (Delorme and Makeig, 2004; 

Makeig, Debener, Onton and Delorme, 2004; Swartz Center for Computational Neuroscience, 

n.d.).  In a long-term collaborative effort, partners at UCSD and NCTU have developed tools for 

data collection, analysis, and interpretation of EEG data in a limited-range of real-world settings. 

Similarly, an Alliance partner at UTSA has developed tools for visualization, analysis, and 

management of multimedia datasets in three major application areas:  biological applications (in 

neuroscience, immunology, and bioinformatics), pattern forming systems, and geophysical 

systems (Robbins, Robinson and Senseman, 2004; Robbins, Grinshpan, Allen and Senseman, 

2004; Robbins and Senseman, 2003; UTSA Visualization and Modeling Laboratory, n.d.).  In 

another long-term collaboration, partners at DCS Corp and ARL have developed tools for the 

modeling and simulation (Johnson, Manteuffel, Brewster and Tierney, 2007) as well as the 

collection and analysis (Metcalfe et al, 2010) of data regarding human-system performance in 

militarily relevant tasks and contexts.  Beyond software development, in efforts that are 

becoming integrated with neuroergonomics research (Oie and Paul, 2009), ARL and DCS have 

long worked collaboratively with the U.S. Army TARDEC to develop paradigms and techniques 

for assessing performance in real-world tasks that use high-fidelity vehicle simulations using a  
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6-degrees of freedom (DOF) motion simulator (McDowell, Rider, Truong, and Paul, 2005; 

Ruffner et al., 2005).  This TE will leverage the wide-ranging expertise of Alliance partners to 

integrate research from the Neurocognitive Performance TA, the Advanced Computational 

Methods TA, and the Neurotechnology TA research strands to provide advanced tools that will 

serve as critical capabilities for applied researchers and as foundational capabilities upon which 

future technologies will build. 

4.2.2 TE II.  Transition Barriers and Hurdles 

While a large variety of advanced imaging and computational tools and techniques have been 

developed and successfully employed within the neuroscientific community, the vast majority of 

the technologies used have been limited to laboratory, fixed-environment contexts for the 

purpose of offline processing and analysis of neurobehavioral function.  Thus, further work is 

needed towards developing analysis approaches that provide insight into neurobehavioral 

function as humans continuously interact with dynamic, high-information content environments. 

There has been little appreciation of the problems encountered when assessing neurocognitive 

performance in real-time within real, dynamic environments.  Neither has much attention been 

given to the particular challenges associated with the real-time application of multiple sensor 

technologies for joint analysis of several typically high-density sources of information regarding 

brain and behavioral dynamics.  This tool development TE, therefore, will have to address all 

five primary scientific barriers. 

B.1 The restriction of experimental designs to highly controlled and impoverished 

stimulus/response paradigms and environments. 

Tools must advance beyond those developed for highly controlled and impoverished scenarios. 

Tools developed under traditional paradigms may not be robust enough for application in highly 

complex environments or multi-tasking scenarios, or for operation in multiple or fluctuating 

performance domains. 

B.2 The lack of portable, user-acceptable (e.g., comfortably wearable), and robust systems 

for monitoring brain and body dynamics. 

Multi-purpose acquisition systems need to able to collect high-fidelity EEG data robustly and 

continuously without the use of conductive gels or skin preparation.  Further, portable systems 

must robustly handle electrical and motion artifacts that pose threats to reliable and valid 

recording of brain dynamics in operational environments. 

B.3 The failure to record the whole of physical, mental, and physiological behavior that the 

brain controls, and the physical and socio-cultural effects of the environment that impact 

brain function, in sufficient detail and across a sufficient breadth of circumstances. 

Data acquisition systems must be generic or adaptable enough to collect data in the sufficient 

detail and across a breadth of circumstances.  Such systems must incorporate a wide-range of 
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sensor technologies and thus must address issues associated with sampling rate, synchronization, 

data storage, and subsequent data retrieval.  Specifically, multi-aspect datasets collecting high-

density data from differing types of physiological sources (e.g., EEG, EMG, eye and body 

movements) are often very large and unwieldy in raw form. 

B.4 The lack of mathematical modeling methods and software to find statistical relationships 

between moment-to-moment variations in environmental, behavioral, and functional 

brain dynamic recordings. 

Due to the novelty and the scale of the large, multi-aspect datasets expected from within 

operationally relevant scenarios, new tools for data-reduction, mining, and visualization must be 

developed.  In particular, as systems progress towards real-time implementations, such tools 

must enable developers to constrain system designs to utilize only the necessary and sufficient 

data as opposed to online mining and processing of overwhelming amounts of data. 

B.5 The lack of sufficient data archives and resources to systematically study relationships 

between individualized models derived for cognitive monitoring and individual 

differences in performance, cognitive ability, and personality, relationships that could 

optimize performance of cognitive monitoring systems while lowering requirements for 

collecting individual subject training data. 

The tools designed and tested under TE II should enable the use of models of brain/behavioral 

changes not requiring extensive pilot training data from each Soldier, while respecting operator 

differences in, e.g., baseline EEG that may be present in recordings from each new Soldier 

subject.  Applied studies under TE II using a number of subjects will allow early investigation 

within the CTA of the extent to which individualized data models perform better than a common 

data model, while computational approaches to characterizing relationships between individual 

and group data, developed under B.5 will allow first testing of methods to quickly individualize a 

common model from partial (baseline) EEG data on each individual. 

In addition to the scientific barriers, the translational process will have to address technical 

challenges.  The primary technical challenges that the advanced tools for brain imaging and 

neurocognitive evaluation TE will face are as follows: 

• Research tools must be understandable, robust, and usable by personnel with basic entry-

level programming and research skills. 

• High-density EEG collection system must be compatible with integration into current 

Army equipment in a manner that is both physically robust and safe for the user. 

• Real-time tools must be optimized for speed and allow system developers the flexibility to 

integrate with a variety of system configurations.
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4.2.3 TE II.  Transitional Timeline 

Six primary Alliance research topic areas feed into this TE: 

1. We will develop hardware and software tools to collect, synchronize, and organize multiple 

data streams and formats, empowering us to observe and record a variety of levels 

(physiological, physical, and environmental) of neurobehavioral data regarding operator 

and environmental state.  

2. We will refine and validate acquisition hardware and related tools for use in complex 

operational environments.   

3. The Alliance will develop, refine, and validate software tools and algorithms for the 

visualization, mining, and analysis of the complex, high-density data streams to be 

obtained through CTA efforts.  This effort is a most critical link in the proposed research, 

since combining brain, body, and performance measures to create cognitive monitoring 

models is both highly innovative and has never been attempted before, thus requiring a 

strong and continued focus of expertise and effort by several CaN CTA computational 

investigators working in concert with CaN CTA experimental researchers. 

4. The acquisition, reduction, and mining tools will be assessed and tuned for usability and 

robust application across experimental tasks and in a variety of experimental contexts.   

5. Accompanying and following the tool development, a fifth area for this TE will explore 

and apply data acquisition, reduction, and mining tools and techniques to real-time 

systems.  This, again, is a critical link that will require strong innovation and continued 

collaboration among computational and experimental CaN CTA researchers. 

6. The hardware and software developed for implementation in real-time systems will be 

assessed and further matured for enhanced usability and ruggedized for implementation in 

Army test-bed systems. 

As shown in figure 4, there will be two main transitions that result from efforts in the six focus 

areas.  Once available, the software and hardware tools developed in the first four focus areas 

will be leveraged into DoD programs (outside of the Alliance collaborators) that aim to study 

and use information regarding Soldier neurocognitive performance and the brain/behavioral 

dynamics supporting it.  Likewise, as the system is translated into a set of robust tools and 

methods for real-time use through efforts in the fifth and sixth focus areas, the Alliance will 

collaborate to facilitate the integration of the neurotechnologies within Army test-beds. 
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Figure 4.  Translational timeline depicting expected progress in TE II. 

Advanced tools will be continually developed, refined, and matured throughout the duration of 

the CTA program.  In the first year, efforts will be focused on primarily in three key areas:  

(1) the development of hardware and software supporting acquisition of high-density data 

regarding neurocognitive performance, (2) the development of a central database structure and 

format for archiving data from all CTA research, and (3) large-scale data mining (enable by area 

2) beginning in the first year and continuing over subsequent years as data are generated and 

integrated into the database.  Developing a central database will require parallel development of 

a cyber infrastructure for integrating joint brain, behavior, and environmental data and analyzing 

multi-factorial datasets using high-performance computing.  We will also develop an 

experimental real-time interactive control and analysis (ERICA) system with UCSD’s DataRiver
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system (Vankov et al., 2010) for distributed data acquisition, synchronization, online processing, 

and stimulus delivery in the first year.  Initial efforts in the first year will also focus on 

preliminary real-time analysis techniques and tool maturation for existing toolboxes.  

From year 2 onward, the acquisition, reduction, and mining tools developed will be applied, 

assessed, and refined for greater integration of highly multivariate, multi-aspect neurobehavioral 

data as well as later progress towards application in real-time systems.  As shown in the timeline 

in figure 4, much of the development for this TE will proceed in parallel, with data acquisition 

feeding, for example, mining and visualization tools that will likewise, feed information back for 

refinement of the hardware and software tools underlying the data acquisition process itself, as 

well as experimental design features that may be required to test and extend them.  

Similarly, the maturation of the tools for usability and robustness across tasks and contexts will 

enable their adoption for use by other DoD laboratories that, in turn, may provide feedback and 

suggestions for subsequent tool refinement and maturation.  Research in from the third year 

onward focuses on exploiting and extending the developments from the first two years and 

exploiting the technologies from TE I, as well as on the maturation and ruggedization of systems 

for use in real-world settings.  

These efforts are described in the Alliance research projects supporting this transition, which 

include the following: 

• Brain Dynamics of Attention Shifting (DAS) 

• Experimental Real-time Control (ERC)  

• Data Fusion, Summary, and Visualization (FSV) 

• MBF 

• Multi-Screen Search (MSS) 

• Neurocomputation (NCP) 

• Speech Comprehension and Neurolinguistics (SCN) 

• VMF 

• WDT 

In addition to the research projects, this TE will require additional specific efforts to address the 

technical challenges. 

• Through all years, as tools approach completion, ARL will lead an effort, in collaboration 

with DCS Corp, to evaluate developed algorithms, interfaces, and hardware for general 

usability and appropriateness for research laboratory and in-field use.  In the initial two 
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years, this effort (lead Chris Stachowiak) will focus on the usability and general human 

factors of Matlab-based software tools developed. 

Critical Points 

There are five critical points in the successful completion of this project: 

C.1.  The required specifications for the data acquisition hardware, software, and file formats 

will be defined and agreed upon.  Usability standards for software tools will be described 

and defined.  The ERICA software system will be made available by Makeig, Vankov 

and colleagues at UCSD for use by Alliance members. 

C.2.   Data acquisition and management infrastructure will be fully implemented and integrated 

with a centralized database for all Alliance members to access and for use in the 

Simulation phase of the experimentation.  Beta phase releases of a subset of tools for 

mining, visualization, and analysis will be made available for Alliance members as well 

as other DoD laboratories.  Initial scenario development will be complete for the 

simulation experiments and scenarios will have been assessed on pilot data. 

C.3.  All data will be collected for the Simulation phase experiments by the end of the first 

quarter of year 4.  All data generated during the Simulation phase experiments will be 

submitted to the CaN CTA database for archival as well as analysis activities.  New and 

revised requirements and specifications for the CaN CTA tool set will be defined and 

agreed upon.   

C.4.  A suite of CaN CTA tools for brain imaging and neurocognitive performance assessment 

will be released in full form, following integration of feedback from Alliance members 

and other DoD laboratories.  Real-time acquisition, reduction, and analysis toolset will be 

delivered for integration into Army test-bed. 

C.5.  A full suite of tools for both online and offline acquisition, processing, and analysis will 

be delivered to and integrated with Army test-bed systems. 

4.2.4 TE II.  Transitions 

The purpose of this TE is to provide hardware and software tools that will enable advanced 

monitoring of Soldier performance in operational environments as research evolves from 

laboratory to simulation to real-world settings.  In particular, the objective of this TE is to 

provide tools necessary for the implementation, integration, and interpretation of MoBI into real-

world environments and the integration of MoBI into DoD systems.  More broadly, the 

transitioning of advanced tools for the acquisition, reduction, visualization, and mining of high-

density information regarding brain and behavioral dynamics will enable vast changes in the 

ability to conduct research within real-world, operationally relevant environments.  However, the
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tool developments envisioned to be advanced within this TE must be matured before longer-term 

transitions can be realized.  For example, beyond the definition and development of hardware 

and software supporting the implementation of advanced acquisition, reduction, visualization, 

and mining capabilities is the enhancement of system usability and robustness for breadth of 

application across user groups and testing/evaluation environments, including ruggedization for 

use in operational environments.  Ultimately, the efforts under TE II will lead to later transitions 

influencing the advanced design of crew station systems and real-time Soldier monitoring 

applications.  By enabling investigations of brain function in complex dynamic environments, 

this will facilitate discovery of previously unexplored relations among multiple brain, behavior, 

and environmental variables targeting new insights to old problems, and contribute to the 

advancement of theories of human performance, and contribute to more comprehensive and 

accurate models of Soldier performance that will better serve the Army across a variety of task 

domains. 

4.3 TE III.  Enhanced Design of High-information Multichannel Crew Stations 

Advances in enabling technologies are enhancing Soldier-system performance and expanding 

operational capabilities; however, these advances are also intensifying the need for Soldiers to 

operate in complex, mixed-initiative system environments in which dynamic, complex 

information streams must be integrated across multiple spatial and temporal scales.  

Technological advances, particularly in sensor deployment, information bandwidth, and 

automation, coupled with economic and political realities, continue to place more and more 

responsibility on fast, distributed, and effectively independent decisions by solo or small groups 

of Soldiers who control ever more potent defensive and offensive assets.  Under such 

circumstances, Soldier cognitive failures in comprehension and decision making based on ever 

more complex data streams can become a critical bottleneck in Army defensive and offensive 

capabilities.  The CaN CTA research program aims to develop neuroscience-based principles 

that focus on how best to assist people to operate in complex, mixed-initiative system 

environments in which dynamic, complex information streams must be integrated across 

multiple spatial and temporal scales.  This TE focuses on prototype high-information 

multichannel crew stations that reflect the complex socio-technical environments envisioned 

above.  Specifically, the TE integrates the basic science and neurotechnology efforts over the 

course of the CaN CTA into a prototype Warfighter-machine interface (WMI) to enhance 

Soldier-system and team performance. 

4.3.1 TE III.  Background 

As Future Force concepts have evolved in the direction of employing computationally intelligent 

architectures to compliment and supplement Soldier abilities, concepts and methods regarding 

the acquisition and use of information have become increasingly central.  The focus of these 

concepts demands continued attention towards improvement of the means and methods by which 

information is both transmitted to and collected from the Warfighters.  That is, as a focal point of 
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continued efforts, emphasis on the interfaces between Warfighter and system is not only 

warranted, but, in fact, is a critical element of future-oriented S&T programs.  Through a variety 

of programs, the U.S. Army has made considerable investments into the development of Soldier-

machine interface technologies to support the conduct of military operations.  With research and 

development efforts beginning as early as the mid 1980s (i.e., on the Inter-Vehicular Information 

System [IVIS] fielded in the M1A2 Abrams), military interface technologies have evolved 

through literally decades of research, development, and engineering evaluations as well as 

through, for some systems (e.g., IVIS, Force XXI Battle Command, Brigade-and-Below 

[FBCB2]), use in-theater (Morrison et al, 2003).  Currently, TARDEC, along with its partners, 

including ARL, the U.S. Communications-Electronics Research Development and Engineering 

Center (CERDEC), and the Night Vision and Electronic Sensors Directorate (NVESD), is 

continuing development of crew station solutions for WMI technologies, an example of which is 

shown in figure 5. 

 

Figure 5.  Example of crew station technology developed to optimize Soldier workload and 

provide the ability to conduct mission planning; route planning; reconnaissance, 

surveillance, and target acquisition (RSTA); and fire control capabilities.  The crew 

station WMI software is fully configurable (up to six possible independent screens 

may be displayed simultaneously), portable (between crew stations), and 

interoperable.  Here, two crew stations are shown as mounted on a large 6 DOF 

motion simulator located at TARDEC. 

The modern direction of WMI development is towards highly complex, mixed-initiative system 

environments.  For example, a vision of the future environment includes a highly networked 

“family” of tactical assets including both manned and unmanned ground and aerial vehicles 

along with remote sensing and weapons capabilities.  In this vision, the WMI is to provide the 

ability for individual Soldiers to have access to broad-area informational resources developed 

from those assets in order to perform one of over 100 possible predefined roles.  Therefore, 

modularity and flexibility of interface design have been essential.  
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At the same time, however, to avoid heavy training burdens, it has been seen as desirable to have 

a WMI that shares common features and functionality across roles and tasks.  The flexibility of 

current TARDEC-ARL crew station solutions results in tremendous functionality that includes 

imagery that makes relatively large, prominent screen space claims, (e.g., vehicle teleoperation 

displays, mission planning, vehicle sensor controls, local area and 3-D situational awareness 

monitoring, multiple-vehicle formations control, robotics control asset list) and secondary 

functions that can be minimized to preserve screen space (i.e., asset maps, route plan maps, and 

warnings, cautions, and alerts [WACAs]). 

Beyond human factors considerations that have driven the screen design concepts, layout, and 

functionality built into the current TARDEC-ARL crew station solutions, the CaN CTA research 

will enable systems designers to address a variety of critical high-level functions that have yet to 

be fully and successfully addressed by enabling technologies integrated with prior WMIs. 

Secure mobility 

Secure mobility is a concept that was created to help capture, in a descriptive sense, the key 

differences in the management of vehicle mobility between civilian and military task contexts 

(McDowell, Oie, Tierney, and Flascher, 2007; McDowell, Nunez, Hutchins, and Metcalfe, 

2008).  In the civilian context, the goals associated with driving include, at a high level, path 

selection, position maintenance, and safety (collision avoidance) for those inside the vehicle as 

well as those outside (pedestrians, other vehicles).  In the military context, however, in addition 

to the concerns associated with basic driving and navigation, Soldiers have the added expectation 

of maintaining local area awareness sufficient to detect threats to their own safety and that of 

their platoon, as well as any semiautonomous (robotic) assets that they may be within their 

purview.  Therefore, there are added demands and dynamics to military mobility tasks that do 

not exist in standard civilian driving conditions.  Further, an important contribution to the 

cognitive dynamics of secure mobility, as it is typically executed under current force operations, 

is that of team function.  That is, because of the complexity and level of threat associated with 

military environments, secure mobility is currently treated as a team function in that one Soldier 

monitors navigation, another drives the vehicle, and yet others serve as look-outs responsible for 

different sectors of observation across the 360° surround.  Tools and techniques are thus needed 

to enhance abilities to efficiently and effectively maintain secure mobility during military 

operations. 

Complex and Multitasking Environments.  

Indeed, military environments are highly complex and dynamic.  More to the point, the range of 

variability associated with military operational environments is quite vast.  Operational tempo 

(OPTEMPO), for example, can vary from extremely slowly changing dynamics, such as in 

scenarios involving the need to manage persistent stare over extremely protracted periods of time 

(i.e., surveillance over a potential enemy base for days on end), to extremely rapidly developing
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dynamics, such as in the midst of an armed confrontation with enemy combatants intermingled 

with civilian bystanders.  Of course, OPTEMPO is but one of many variable factors that 

influence the technologic needs of the Soldier situated in theater; variable constraints affecting 

communications, visualization, cognitive, and physical fatigue; maintenance of a common 

operating picture; and so on limit the abilities of the individual Soldier in the modern threat 

environment as well as drive the need for technologic enhancements to the WMI.  Beyond the 

multimodal complexity affecting mission dynamics is the fact that the modern Soldier will be 

expected to function adaptively under the pressures of maintaining performance on multiple, 

temporally overlapping and, in some cases, competing tasks—each with their own variable 

dynamics.  Examples of overlapping tasking may include monitoring of several (intra- and inter-

vehicular) communications streams, monitoring and control of one or more unmanned tactical 

assets (both aerial and ground assets), and monitoring streams of (mostly visual) data forming 

the common operating picture, along with other RSTA activities. 

Platoon Leader (PL) Decision-Making 

In the U.S. Army, a mechanized platoon of light or heavy armored vehicles can consist of 

number of Soldiers and a variety of equipment.  An M1 tank platoon can typically contain four 

tanks with four crew members in each tank (tank commander, gunner, driver, and loader).  One 

of the tank commanders would also be the leader of the platoon.  A platoon of mechanized 

infantry in Bradley Fighting Vehicles would contain four vehicles with 10 Soldiers in each.  

Some of the Bradley platoon Soldiers will have mounted roles and some will have dismount 

roles, but all will be commanded by the platoon commander.  Such platoon organizations are 

further grouped into companies made up of three to four platoons with additional staff and 

equipment for company Headquarters.  Therefore, decisions to be made at the PL command 

echelon affect and are affected by both top-down and bottom-up elements of the command 

structure.  In order to make adequate decisions at the PL level, one must be aware of the state of 

subordinate troops, the local operational environment, the state of the company, as well as orders 

and constraints communicated downstream from higher echelons.  The WMI, therefore, must 

also provide sufficient capability to simultaneously monitor all relevant aspects of the 

informational environment.  Given the complexity of the typical military operational context, 

information presented to the PL should not be presented in the form of raw data (i.e., raw video 

screens, unfiltered audio, etc.), but rather should be processed, summarized, and/or enhanced to 

facilitate immediate comprehension for the sake of time-pressured decision-making. 

Team Dynamics/Cooperation 

As with secure mobility discussed previously, many military tasks conducted in the operational 

environment involve a division of roles with an aim towards integration of outcome.  That is, 

military tasks are commonly subdivided into smaller sets of roles to be assigned to different 
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members of a platoon or vehicle crew under the concept that as each Soldier fulfills his or her 

role, the overall mission will be brought to completion.  What this presumes, however, is that all 

members of the team/platoon/squad share, in continuous real-time, the same essential cognitive 

ingredients (i.e., information, attention, motivation, intent, etc.) for assembling the necessary 

orderly plan of action for completing the assigned task or tasks.  Moreover, to add to the 

complexity of cooperative tasks, certain military concepts assume that tasks broken into 

subcomponents in this way can be completed by teams of non-co-located Soldiers (e.g., target 

acquisition and engagement).  Thus, differing perspectives/frames of reference on the problem 

environment as well as the dynamics of potentially imperfect communications streams have the 

potential to alter (or at least dramatically complicate) the ability of such teams to operate 

effectively and efficiently when conducting distributed team actions. 

Brain-system Interface 

Finally, the ideal concept for “closing the loop” between Soldier and system through a well-

designed interface is to provide a means of feeding data regarding the neurocognitive state of the 

Soldier into the WMI that is being used.  Such an achievement would be a major advance over 

current action-based (e.g., button pressing) methods of providing Soldier feedback to the system 

function as it would not rely on awaiting appropriate overt action from the Soldier alone; the 

system could function based, in part, on the neurocognitive data that it received from monitors of 

Soldier physiology and behavior.  This inherently suggests that data regarding the moment-to-

moment dynamics of brain function (i.e., “brain waves” or EEG patterns) should be integrated 

with WMI function.  However, under the concepts of MoBI as discussed earlier, a true “brain 

system interface” must include more than EEG data; it must also include data regarding the 

behavior that is being optimized and controlled by brain function.  Therefore, information 

regarding Soldier/operator behavior and appraisal of the stimulus environment to be gained from 

measurement of gaze point location, bodily action, and autonomic function (e.g., heart rate, 

respiration) should be integrated with the WMI in addition to EEG for the efficient leveraging of 

neurocognitive signatures for enhancing overall system performance. 

4.3.2 TE III.  Transition Barriers and Hurdles 

As already established, the development of Soldier-machine interface technology spans several 

decades of science and engineering efforts.  Starting as early as the 1980s, military interests have 

funded the development of technologies to provide battlespace information to Soldiers that are 

located within vehicles designed to simultaneously enhance both survivability and lethality.  In 

the CaN CTA, however, efforts are planned to take a new direction in enhancing previous WMI 

design concepts for modern-era military use.  That is, the research and development efforts 

within the CaN CTA will build on previous WMI concepts to integrate the Soldier and the 

system in ways that have not yet been achieved for fielded systems.  The high-information, 

multichannel crew station to be prototyped through the CaN CTA will be among the first of its 

kind to place Soldier and system on equal footing as members of the same team—with the 
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system leveraging “knowledge” regarding the state of the Soldier to take action that facilitates 

the Soldiers ability to complete operational tasks both efficiently and effectively.  In order to 

develop such a prototype system, then, this preplanned TE will have to build from the early 

progress made in crew station interface design in addressing all five primary scientific barriers: 

B.1 The restriction of experimental designs to highly controlled and impoverished 

stimulus/response paradigms and environments. 

Experimental environments must advance beyond those typically developed for highly controlled 

and impoverished laboratory settings. WMIs developed need to be matured and validated as 

robust enough for application in highly complex environments, multi-tasking scenarios, or for 

operation in multiple or fluctuating performance domains such as PL decision making and secure 

mobility. 

B.2 The lack of portable, user-acceptable (e.g., comfortably wearable), and robust systems 

for monitoring brain and body dynamics. 

Multi-purpose acquisition systems need to able to collect high-fidelity EEG data robustly and 

continuously without the use of conductive gels or skin preparation.  Further, portable systems 

must robustly handle the expected substantial, in-vehicle electrical and motion artifacts that pose 

threats to reliable and valid recording of brain dynamics in operational environments. 

B.3 The failure to record the whole of physical, mental, and physiological behavior that the 

brain controls, and the physical and socio-cultural effects of the environment that impact 

brain function, in sufficient detail and across a sufficient breadth of circumstances. 

Data acquisition systems must be generic or adaptable enough to collect data in the sufficient 

detail and across a breadth of circumstances and in conjunction with a variety of interface 

configurations supporting a number of military roles.  Such systems must incorporate a wide 

range of sensor technologies and thus must address issues associated with sampling rate, 

synchronization, data storage, subsequent data retrieval, and overall data flow between system 

components.  Specifically, multi-aspect datasets collecting high-density data from differing types 

of physiological sources (e.g., EEG, EMG, eye and body movements) are often very large and 

unwieldy in raw form. 

B.4 The lack of mathematical modeling methods and software to find statistical relationships 

between moment-to-moment variations in environmental, behavioral, and functional 

brain dynamic recordings. 

Due to the novelty and the scale of the large, multi-aspect datasets expected from within 

operationally relevant scenarios, new tools for data-reduction, mining, and visualization must be 

developed.  In particular, as systems progress towards real-time implementations, such tools 

must enable developers to constrain system designs to utilize only the necessary and sufficient 

data as opposed to online mining and processing of overwhelming amounts of data.  Moreover, 
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in order for such information to be most useful in the crew station context, adequate and 

advanced methods for summarizing complex data need to be explored alongside methods for 

efficient and effective communication of complex multichannel (visual, auditory, text-based) 

data streams. 

B.5 The lack of sufficient data archives and resources to systematically study relationships 

between individualized models derived for cognitive monitoring and individual 

differences in performance, cognitive ability, and personality, relationships that could 

optimize performance of cognitive monitoring systems while lowering requirements for 

collecting individual subject training data. 

The WMI designed and tested under TE III should be able to use models of brain/behavioral 

changes that do not require extensive pilot training data from each Soldier, while respecting 

operator differences in, e.g., baseline EEG that may be present in recordings from each new 

Soldier subject.  Applied studies under TE III using a number of subjects will allow early 

investigation within the CTA of the extent to which individualized data models perform better 

than a common data model, while computational approaches to characterizing relationships 

between individual and group data, developed under B.5 will allow first testing of methods to 

quickly individualize a common model from partial (baseline) EEG data on each individual. 

In addition to the scientific barriers, the translational process will have to address technical 

challenges related to the specific operational topics discussed above.  The primary technical 

challenges that the enhanced design of high-information multichannel crew stations TE will face 

are as follows: 

• Crew station interfaces must provide data and visualization tools sufficient for maintenance 

of real-time local area awareness during vehicle mobility control.  Such tools may include, 

but are not necessarily limited to, those supporting semi-autonomous navigation, which has 

the potential to alleviate demands on driver perception and attention during execution of 

simultaneous mobility and security tasks (McDowell et al., 2008) so as to enable execution 

of secure mobility functions. 

• Crew station interfaces must provide communications tools sufficient for maintenance of 

real-time situational awareness during multitasking and teaming/cooperation.  In both 

multitasking and teaming/cooperation scenarios, maintenance of situational awareness is 

essential—allowing the operator to construct and hold mental representations of task status 

during execution of potentially discontinuous, irregular OPTEMPO operations under 

constraints of partial information feedback. 

• A key aspect of decision making is the ready access to the information necessary for 

arriving at an optimal choice among a limited set of viable operational options.  Therefore, 

to support decision making, both advanced intelligent architectures (including autonomous 

agents) and real-time communications and visualization enhancements will necessarily 
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need to be integrated.  The combination of enhanced informational systems supporting 

real-time situational awareness with intelligent architectures designed to assist decision 

making (e.g., an “expert system” that summarizes data and prioritizes potential actions), 

especially as complimented by integrated data regarding the neurocognitive states of each 

Soldier in a PL’s command, has considerable potential to ease and economize decision 

making when in time-pressured operational circumstances. 

4.3.3 TE III.  Translational Timeline 

As shown in figure 6, seven primary Alliance research topic areas feed into this TE:  

1. First, it will be necessary to integrate the novel data acquisition, reduction, and mining 

tools from TE II into the crew station as they become available through CaN CTA efforts.  

The existence and integration of such tools for assessment and characterization of Soldier 

neurocognitive state and performance will serve as a foundation on which progress in the 

remaining focus areas will rest.   

2. We will develop and integrate tools to advance Soldier capabilities to execute secure 

mobility functions using the WMI.  

3. In a parallel effort, the CaN CTA will develop and assess new WMI technologies for 

enhanced performance in complex, multitasking environments (including secure mobility 

functions). 

4. In a similar parallel effort, the Alliance will address the challenge of providing 

technologies to enhance PL-level decision making in operational environments. 

5. We will examine communications tools for facilitating team performance during execution 

of cooperative tasks. 

6. The Alliance will work to integrate the above five efforts with one aimed at developing and 

refining MoBI-derived brain-machine interfaces for enhancement of Soldier-system 

performance using neurocognitive data. 

7. During the fifth program Year, all of the above described efforts will culminate in an area 

of focus that will develop a prototype, proof-of-principle WMI that integrates 

neuroscience-based design elements, or neurotechnologies. 

There will be one main transition that results from efforts in the seven focus areas, that is, the 

tools, techniques, and technologies developed through CaN CTA efforts in general, as well as 

from TE III in particular, will result in a prototype high-information multichannel crew station to 

be integrated with an Army vehicle test-bed system.  The multichannel crew station will support 

advanced visual displays, audio and text-based communications, brain-machine interfaces, and 

automation for enhancing Soldier-system performance in the areas of secure mobility, 

multitasking support, teaming/cooperative mission execution, and decision making.
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Figure 6.  Translational timeline depicting expected progress in TE III. 

The high-information multichannel crew station TE illustrates a progressive process to be 

metered out across the duration of the CaN CTA program period.  In year 1, the focus in TE III 

will be on the integration of advanced tools from TE II as they are matured to the point where 

they may be used in the crew station environment.  Year 2 will then begin focus on applying the 

advanced tools to the high-level objectives of establishing tools for facilitating goals associated 

with secure mobility as well as enabling performance in complex, multitasking environments.  

Year 3 onward will then see the enhancement of the crew station environment and associated 

tools for use in team dynamics and decision making, as well as integration of MoBI-derived tools 

for brain-system interfacing.  Further, from year 3 onward, efforts will aim towards integration 

of tools and techniques with crew stations in Army test-bed environments.  In the final year, 

proof-of-principle neurotechnologies will be integrated to complete the final transition of a high-

information multichannel crew station prototype for use in complex military environments.



 48 

These efforts are described in the Alliance research projects supporting this transition, which 

include the following: 

• The Construction and Use of Cognitive Maps Under Threat (CMT) 

• DAS 

• Constructing Mutually-derived Situational Awareness via EEG-informed Graph-based 

Transductive Inference (GTI) 

• MBF 

• Modeling Perceptual Decision Making (MDM) 

• Multi-Modal Sensory Attention (MSA) 

• MSS 

• Using Neural Biomarkers to Predict and Guide an Individual‘s Ability to Optimally Adapt 

Decision Rules (NBD) 

• Optimal Decision Making (ODM) 

• ODE 

• Using Neural Activity to PAL 

• Perceptual Integration Across Time and Modality (PTM) 

• SCN 

In addition to the research projects, this TE will require additional specific efforts to address the 

technical challenges. 

• From Year 3 onward, as tools approach completion ARL will lead an effort, in 

collaboration with DCS Corp, to evaluate developed tools, techniques, and interface 

technologies for general usability and appropriateness for research laboratory and in-field 

utilization. 

Critical Points 

There are five critical points in the successful completion of this project. 

C.1  The ERICA/DataRiver data acquisition system will undergo initial integration with 

ARL/TARDEC crew station test-bed.  In particular, efforts will focus on issues affecting 

synchronization and storage of high-density, multimodal data to be obtained using 

paradigms developed under the MoBI concept.
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C.2.  A preliminary scenario concept will be developed for assessment of crew station 

functionality in final capstone phase experiments.  A gap analysis, focusing on 

discrepancies between simulation phase and final capstone phase experimental scenarios 

will be completed. 

C.3.  Gaps between simulation phase and final capstone phase experimental scenarios will be 

investigated.  Principles and concepts for implementation in neurotechnologies proof-of-

principle will be identified and development requirements will be specified. 

C.4. Scenarios for final capstone phase experiment will be finalized and piloted.  Brain-system 

interfaces designed for integration with the proof-of-principle neurotechnologies will be 

available. 

C.5. Test and evaluation of the neurotechnology prototypes in crew station test-bed will take 

place.  All prototype hardware/software and results will be delivered to the transition 

customer. 

4.3.4 TE III. Transitions 

The objective of this TE is to develop and deliver a prototype crew station system that will 

advance WMI technologies beyond those designed under traditional systems, software, and 

human factors engineering concepts.  Specifically, as systems have been typically developed, 

end users have only been considered during system design at two levels:  (1) when specifying the 

goal state for the system in terms of user functionality and (2) in designing the interface once the 

system and its functionality have been defined and largely developed.  Yet, in terms of the actual 

mechanisms of system function, generally speaking, the needs of (and potential contributions 

from) the user have largely been subordinated to the engineering challenges encountered during 

system design and development.  From a neuroergonomic standpoint, however, it is considered 

to be advantageous to account for users and their functional properties (i.e., neurocognitive 

function) from the outset of and throughout the process.  As such, the goal of this TE is to 

leverage tools (hardware and software) and techniques as developed through CaN CTA research 

efforts in general, as well as from the other two TEs in particular, to enhance performance on a 

selected set of functions that include secure mobility, complex and multitasking environments, 

PL decision making, and team dynamics and cooperation.  Such technologies for leveraging 

aspects of neurocognitive function will be realized through brain-system interfaces that enable 

proof-of-principle neurotechnologies to be instantiated in an Army test-bed system.  By 

enhancing the design of WMIs in this fashion, it is expected that the activities executed under 

this TE will bring future force concepts closer to their ultimate realization in crew station 

systems. 
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Appendix.  Listing of Projects and Principal Investigators 

Table A-1 is a list of the projects and their principal investigators. 

Table A-1.  Projects and principal investigators. 

Project Title Project 

ID 
Principal Investigators Project Keywords 

TA1: Neurocognitive Performance 
Ambulatory 

Neuroergonomics 
ANE Dr. Dan Ferris, U. Michigan 

Dr. Jason Metcalfe, DCS Corp 
Locomotion, Motor control, 

Lower-limb dynamics 
Construction & Use of 

Cognitive Maps Under 

Threat 

CMT Dr. Chin-Teng Lin, NCTU 
Dr. Peter König, U. Osnabrück 

Spatial cognition; Spatial 

navigation; Multisensory 

integration; 
Large-Scale Experiments LSE Dr. Scott Makeig, UCSD Attentional Switching, 

Multitasking, Individual 

Differences 
Modeling Perceptual 

Decision Making 
MDM Dr. Angela J. Yu, UCSD Cognitive modeling, 

Individual differences, 

Bayesian predictive models, 

Perceptual contingency 

learning 
Multi-modality Sensory 

Attention 
MSA Dr. Peter König, U. Osnabrück Multisensory integration, 

Attention allocation, Tactile 

displays 
Multi-screen Search MSS Dr. Klaus Gramann, U. Osnabrück 

Dr. Jason Metcalfe, DCS Corp. 
Visual search, Internal 

reference frames, Multi-modal 

sensory inputs, Situational 

awareness 
Using Neural Activity to 

Predict and Guide an 

Individual’s Ability to 

Optimally Adapt Decision 

Rules * 

NBD Dr. Michael Miller, UCSB 
Dr. Barry Giesbrecht, UCSB 

Dr. Scott Grafton, UCSB 

Dr. Jean Vettel, ARL 

Signal detection theory, 

Optimal decision making, 

Individual differences 

Operator Dynamics of 

Event Appraisal 
ODE Dr. Jason Metcalfe, DCS Corp 

Dr. Stephen. Gordon, DCS Corp 

Dr. W. David Hairston, ARL 

Dr. Will Nothwang ARL 

Event appraisal; Facial 

expression; Affective 

response; Multisensor fusion 

Using Neural Activity to 

Predict Attentional Lapses 

During Multisensory Task 

Scenarios* 

PAL Dr. Daniel Weissman, U. Michigan 
Dr. Barry Giesbrecht, UCSB 

Dr. W. David Hairston, ARL 

Machine learning, 

Performance prediction, 

Attentional lapses 

Speech Comprehension 

and Neurolinguistics 
SCN Dr. Roger Levy, UCSD Semantic processing, 

Neurolinguistics 
*- Year 2 Seedling award. Seedling projects are awarded based on competitive solicitation to address specific issues identified as 

priorities for the Army. Project proposals can be up to three years in duration, and are reviewed annually.
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Table A-1.  Projects and principal investigators (continued). 

Project Title Project 

ID 
Principal Investigators Project Keywords 

TA2: Neurocomputation 
Connectome-based 

Advancement of Brain 

Analysis* 

CBA Dr. Walter Schneider, U. Pitt 
Dr. Don Krieger, U. Pitt 

Dr. Jean Vettel, ARL 

Individual differences, 

Diffusion weighted imaging, 

Structure-function coupling 
Dynamics of Attention 

Shifting 
DAS Dr. Scott Makeig, UCSD 

Dr. Jeanne Townsend, UCSD 
Selective attention, Cortical 

dynamics 
Data Fusion, Summary, and 

Visualization 
FSV Dr. Kay Robbins, UTSA 

Dr. Nandini Kannan, UTSA 

Dr. Yufei Huang, UTSA 

Data visualization, Database 

design 

Neurocomputation NCP Dr. Kenneth Kreutz-Delgado, UCSD 
Dr. Roger Levy, UCSD 

Dr. Angela J Yu,, UCSD 

Dr. Scott Makeig, UCSD 

Independent component 

analysis (ICA), Statistical 

modeling, Adaptive Mixture 

ICA (AMICA) 
*- Year 2 Seedling award. Seedling projects are awarded based on competitive solicitation to address specific issues identified 

as priorities for the Army. Project proposals can be up to three years in duration, and are reviewed annually. 
 

TA3: Neurotechnologies 
Constructing Mutually-

derived Situational 

Awareness via EEG-

informed Graph-based 

Transductive Inference* 

GTI Dr. Paul Sajda, Columbia U. 
Dr. Brent Lance, ARL 

Rapid Serial Visual 

Presentation,  

MoBI-based Feedback for 

Training of Automated 

Systems and System 

Operators 

MBF Dr. Scott Makeig, UCSD Brain-computer interaction, 

Adaptive systems, Training 

Effects of Vehicle Motion 

and Cognitive Fatigue 
VMF Dr. Chin-Teng Lin, NCTU 

Dr. Tzyy-Ping Jung, UCSD 
Brain-computer interaction, 

User monitoring, Data 

acquisition, Real-time data 

processing 
Wearable EEG 

Development and Testing 
WDT Dr. Chin-Teng Lin, NCTU 

Dr. Tzyy-Ping Jung, UCSD 
Wearable systems, Sensor 

development 
*- Year 2 Seedling award. Seedling projects are awarded based on competitive solicitation to address specific issues identified as 

priorities for the Army. Project proposals can be up to three years in duration, and are reviewed annually. 
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List of Symbols, Abbreviations, and Acronyms 

3-D three-dimensional 

AgCl silver chloride 

ARL  U.S. Army Research Laboratory 

BCI brain-computer interface 

CaN  Cognition and Neuroergonomics 

CTA Collaborative Technology Alliance 

CERDEC U.S. Army Communications-Electronics Research, Development and Engineering 

Center 

CES Command Environment Simulator 

CMT Cognitive Maps Under Threat 

DAS Brain Dynamics of Attention Shifting 

DCS DCS Corporation 

DOD Department of Defense 

DoF degrees of freedom 

ECG electrocardiography 

EEG electroencephalograM 

EMG electromyography 

ERC Experimental Real-time Control 

ERICA Experimental Real-time Interactive Control and Analysis 

FBCB2 Force XXI Battle Command, Brigade-and Below 

fMRI Functional Magnetic Resonance Imaging 

FSV Data Fusion, Summary, and Visualization 

GI Graph Invariant 

GTI Graph-based Transductive Infrerence 

IC independent component 
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ICA Independent Component Analysis 

IED improvised explosive device 

IVIS Inter-Vehicular Information System 

MBF MoBI-Based Feedback for Training Automated Systems and System Operators 

MDP Markov Decision Process 

MEMS microelectromechanical system 

MoBI mobile Brain/Body Imaging 

mocap motion capture 

MOM Modeling Perceptual Decision Making 

MR magnetic resonance (imaging) 

MSA Multi-modal Sensory Attention 

MSS Multi-Screen Search 

NBD Using Neural Biomarkers to Predict and Guide an Individual’s Ability to  

 Optimally adapt Decision Rules 

NCP Neurocomputation 

NCTU National Chiao Tung University 

NVESD Night Vision Electronic Sensors Directorate 

ODE Operator Dynamics of Event Appraisal 

ODM Optimal Decision Making 

PAL Predict Attentional Lapses During Multisensory Task Scenarios 

PET Positron Emission Tomography 

PL platoon leader 

PTM  Perceptual Integration Across Time and Modality 

RSTA reconnaissance, surveillance, and target acquisition 

S&T science & technology 

SBL sparse Bayesian learning 

SCN Speech Comprehension and Neurolinguistics 
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TA Technical Area 

TARDEC U.S. Army Tank Automotive Research Development and Engineering Center 

TBL tramatic brain injury 

TE Transition Effort 

UCSB University of California Santa Barbara 

UCSD University of California San Diego 

UTSA University of Texas San Antonio 

VMF Effects of Vehicle Motion and Cognitive Fatigue 

VR virtual reality 

WACA warnings, cautions, and alerts 

WDT Wearable EEG Development and Testing 

WMI Warfighter-Machine Interface 
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